Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35092
標題: 大安溪士林堰越域引水對其下游農業灌溉用水影響之研究
A Study on the Effects of Transwatershed Diversion of Da-an River Shih-lin Weir on the Downstream Agriculture Irrigation water
作者: 王明信
Wang, Ming-Hsin
關鍵字: 超越機率;Exceedence probability;越域引水;農業灌溉;缺水率;Transwatershed diversion;Agriculture irrigation;Ratio of water deficiency
出版社: 水土保持學系所
引用: 參考文獻 1.王如意、易任,(1992),「應用水文學下冊」,國立編譯館。 2.台中農田水利會,(1991~2009),「雨量紀錄表」。 3.台中農田水利會,(1996~2009),「水稻及旱作灌溉用水計畫與實際取水紀錄表」。 4.台中農田水利會會誌,(2009),p.653,台中農田水利會編印。 5.台灣省水利局,(1990),「苗栗縣鯉魚潭水庫第二期工程規劃報告」,台灣省水利局編印。 6.甘俊二、許宗民,(1984),「水稻耐旱性及節水灌溉對策之調查研究」,台灣水利,第32卷,第1期,p.4-p.37。 7.行政院農業委員會,(2001),「灌溉排水營運管理」,行政院農業委員會編印。 8.行政院農業委員會水利特刊第八號,(1995),「灌溉節水技術手冊」,行政院農業委員會,七星農田水利研究發展基金會合編。 9.施嘉昌、徐玉標、甘俊二、曹以松,(1988),「灌溉排水原理」第三版,中央圖書出版社。 10.洪念民、童慶斌、譚義績,(1998),「氣候變遷對台中水利會大安溪灌渠缺水率之影響」,台灣水利,第46卷,第2期。 11.徐元棟、黃振昌,(2005),「休耕農地維持水田農業多樣性機能之探討-以新竹地區為例」,水稻田農業多樣性機能研討會,p.176。 12.索明,(1977),「應用水文統計學」,偉成出版社。 13.張禎驩,(2001),「以歷史流量法推估卑南溪河川生態基流量之研究」,國立中興大學水土保持研究所碩士論文。 14.許睿翔,(2006),「水田埤塘之系統動力模式」,國立中央大學土木工程研究所碩士論文。 15.陳清田,邱一盛,劉景平,(1997),「節水灌溉對水稻生產生態影響之研究2」財團法人曹公農業水利研究發展基金會編印。 16.陳榮坤、楊純明,(2005),「水稻節水栽培之可行性探討(二)灌溉對水稻生產影響」,農業試驗所技術服務季刊,第61期,p.1-p.5。 17.陳豐文、陳獻,(2007),「為因應水利會多角化經營加強調整及灌溉管理節約用水規劃」,農業工程研究中心刊行。 18.陳獻、林垂鈺、陳豐文、周鉅峰,(2005),「西寶水力發電廠對萬里溪及馬鞍溪下游農田灌溉及公共用水影響評估及因應對策」,農業工程研究中心刊行。 19.童慶斌、楊奕岑,(2004),「氣候變遷對台灣水文環境之衝擊」,全球變遷通訊雜誌,第44期。 20.黃文政、楊富堤,(1999),「區域化序率水文推估模式之研究」,第十屆水利工程研討會論文集。 21.黃金山,(1986),「台灣水庫規劃缺水忍耐標準之探討」,第三屆水利工程研討會論文集。 22.經濟部水利處,(2000),「鯉魚潭水庫與石岡壩水源運用檢討報告」。 23.經濟部水利署中區水資源局,黎明工程顧問股份有限公司,(2010),「大安溪及大甲溪水資源聯合運用規劃總報告」。 24.經濟部水資源局,黃文政,(2000),「台灣地區河川日流量分析與運用之研究」,p.7-p.9。 25.農田水利聯合會,(1999),「農田水利技術人員訓練教材」,農田水利聯合會編印。 26.農田水利聯合會,(2003),「農田水利會現行相關法規彙編」,農田水利聯合會編印。 27.廖元熙,(1993),「水庫系統風險分析」,自來水會刊雜誌,第48卷,p.37-p.42。 28.蔡明澤,(2002),「越域引水水庫聯合操作規線與打折供水最佳化之應用-以寶山與寶山第二水庫為例」,國立中央大學土木工程研究所碩士論文。 29.蕭政宗,(1999),「單一水庫系統缺水特性之探討」,臺灣水利,第47卷,第2期,p.72-p.91。 30.丸山利輔等編,(1986),「灌溉排水上卷」,東京,株式会社養賢堂出版,p.44-p.49。 31. 中村好男,豐田裕道等編,(2010),「食と農と資源」,共立出版社,p.1-p.3。 32.McCabe, G. J. and Wolock, D. M. (1992). Sensitivity of Irrigation Demand in A Humid-temperate Region to HypotheticalClimatic Change. Water ResourcesAssociation, 28(3):p.535-p.543. 33.N N Basak, (2001). Irrigation Engineering , Tata Mc Grow-Hill A Division of The Mc Grow.Hill Companies. p.21-p.22. 34.Tubiello, F. N., Donatelli, M., Rosenzweig, C.and Stockle, C. O. (2000). Effects of climate change and elevated CO2 on cropping systems: model predictions at twoItalian locations. European Journal of Agronomy, 13:p.179–p.189. 35.其他相關網站 中央氣象局網站 http://www.cwb.gov.tw/ 台灣大百科網站 http://taiwanpedia.culture.tw/web/ 海洋大學水資源研究室-河川斷面潛能水量推估網http://wrm.hre.ntou.edu.tw/wrm/plan87/fig3-7.html 經濟部水利署網站http://www.wra.gov.tw/ct.asp?xItem=12821&ctNode=2387&comefrom
摘要: 
本研究選取大安溪士林堰上游象鼻(3)水文測站之歷史河川日流量資料計算成旬平均日流量,並據以統計分析當旬之超越機率及判斷當旬自然豐枯水文現象,並依據該資料判斷缺水屬自然現象或越域引水所影響。
經演算士林堰越域引水前後各七年間(1996~2009,計504旬)各不同缺水程度發生之旬數,比較其差異性。結果顯示;士林堰營運後總缺水旬數為營運前2.06倍;50~60%缺水率高達5.75倍。在水稻耕作尖峰用水期,越域引水營運前第一期與第二期稻作缺水旬數分別為7旬及5旬,營運後缺水旬數為16旬及18旬,而其水稻耕作最需水之本田時段,一期稻作營運前缺水旬數為12旬,營運後為23旬,二期稻作營運前缺水旬數為5旬,營運後為18旬。
營運前一期作天然水文枯水、乾旱之旬數佔全期之63/126;而水稻耕作缺水旬數有44/126,意味著營運前天然流量在枯水及乾旱期,水稻耕作期雖出現缺水,但其缺水旬比例較天然枯水、乾旱旬數少;而營運後水稻耕作期缺水旬比上昇到80/126,顯示一旦枯乾,水稻耕作期就缺水。而二期作營運前天然枯水、乾旱旬比為48/126,水稻耕作期缺水旬比例為20/126,表示河川天然流量枯水乾旱期水稻耕作期不一定會缺水,但營運後期缺水旬數上昇到52/126,即只要天然枯水乾旱水稻本田最需水期就一定缺水。以上數據得知,營運前缺水受自然水文現象影響,主要缺水時段為一期作水稻耕作尖峰用水時間,但營運後,不但未改善營運前之缺水狀況,且原本不太缺水之二期作,也出現頻繁缺水。故士林堰越域引水,確有影響下游農業灌溉,將影響農糧生產。本研究分析缺水原因並初擬解決對策提供有關單位設法改善之參考。

Based on the daily flow of river recorded in Hsiang-pi (3) Gauging Station on the upstream of Da-an River Shih-lin Weir, the average daily flow in the period of ten days is calculated. Moreover, Exceedence probability of the ten-day period was analyzed to judge the natural flood-dry hydrology and further to determine the effects on water deficiency being nature or Transwatershed diversion.
Having calculated the seven years each before and after Transwatershed diversion of Shih-lin Weir (1996~2009, total 504 ten-day periods), water deficiency in various ten-day periods was compared. The outcomes show that the total ten-day period of water deficiency after the operation of Shih-lin Weir is 2.06 times of it before the operation and the ratio of water deficiency being 50~60% has reached 5.75 times. During the peak water consumption when paddy farming, the ten-day periods of water deficiency at the first and the second phases before the operation of Transwatershed diversion are 7 and 5, respectively, but 16 and 18 after the operation. During paddy farming when water is highly required, the ten-day periods of water deficiency at the first phase are 12 before the operation and 23 after the operation, while the ten-day periods of water deficiency at the second phase are 5 before the operation and 18 after the operation.
The ten-day period of natural hydrological drought at the first phase before the operation is 63/126 of the whole period, while the ten-day periods of water deficiency when paddy farming is 44/126. It reveals that the natural flow in dry period before the operation would appear water deficiency during paddy farming, but the proportion of water deficiency is less than it during dry season. Nonetheless, the proportion of water deficiency rises up to 80/126 after the operation, showing that water deficiency often appears when paddy farming. The ten-day period of natural hydrological drought at the second phase before the operation is 48/126 of the whole period, while the ten-day periods of water deficiency when paddy farming is 20/126. It presents that the natural flow in dry period before the operation does not necessarily appear water deficiency during paddy farming. Nevertheless, the ten-day period of water deficiency rises up to 52/126 after the operation, revealing that water deficiency would appear when paddy farming during natural drought. According to the above data, water deficiency before the operation is affected by natural hydrology that the water deficiency period appears on the peak water consumption of paddy farming at the first phase. Unfortunately, water deficiency is not improved after the operation, but it even frequently appears on paddy farming at the second phase when it is normally not short of water. As a consequence, Transwatershed diversion of Shih-lin Weir indeed affects the downstream agriculture irrigation and further influences the production of agriculture food. This study aims to draw up a solution for the concerned units to further improve the situation.
URI: http://hdl.handle.net/11455/35092
其他識別: U0005-2707201123164800
Appears in Collections:水土保持學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.