Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35096
標題: 以野外調查與分離元素法評估卵礫石層強度性質
Evaluation of strength properties of gravel formations based on field investigation and the discrete element method
作者: 鄭敏杰
Cheng, Min-Chieh
關鍵字: gravel formation;卵礫石層;topography;strength parameters;PFC 2D;地形;強度參數;PFC2D
出版社: 水土保持學系所
引用: 1.王文祥(1996),「礫石層之沉積特徵及量化描述方法嘗試」,地工技術,第55期,第25-34頁。 2.王瑞斌(2001),「南投九九峰卵礫石之排列及其形狀對坡度的影響」,碩士論文,國立臺灣大學地質科學系。 3.吳仁明(2010),「礫石坡面土石流發生機制之探討」,博士論文,國立中興大學水土保持學系。 4.邱家吉、王泰典、黃燦輝(2010),「以個別元素法模擬節理岩體單軸壓縮下之力學行為」,全國岩盤工程研討會,高雄,第271-280頁。 5.林明慧(2010),「分離元素模型於地質材料及邊坡之應用」,碩士論文,國立中興大學水土保持學系。 6.林基源、楊明德、徐松圻、蔡佩勳、許世宗、賴俊仁、賴銘峰、壽克堅、黃富國、陳廣祥、許尚逸(2009),「陳有蘭溪流域坡地災害致災成因探討」,地工技術,第112期,第41-50頁。 7.林昀葦(2006),「台灣中部地區於崩積層抗剪強度之簡易現地試驗」,國立中興大學土木工程研究所碩士論文。 8.林朝棨(1957),「台灣地形─臺灣通志稿卷一土地誌地理篇」,南投,臺灣省文獻委員會。 9.林耀隆(2007),「以改良式三軸儀器探討卵礫石土之剪脹行為」,國立中興大學土木工程研究所碩士論文。 10.洪如江、詹勳山、楊彰文、何鏗鏘、魏烈舫、陳振才、鄭在仁、馬灼津、陳煌銘(1978),「複合土工程性質初步研究」,台大工程學刊,第23 期,第1-12頁。 11.洪如江(1995),「台灣紅土礫石台地之風化與侵蝕」,國際卵礫石地下工程研討會,台北,第11-19頁。 12.高百毅(2010),「土石流舌狀堆積特性之探討」,碩士論文,國立中興大學水土保持學系。 13.張吉佐、陳逸駿、嚴世傑、蔡宜璋(1996),「台灣地區中北部卵礫石層工程性質及施工探討」,地工技術,第55 期,第35-46頁。 14.曾慶九(2010),「礫石型土石流停積之石礫軸向特性探討」,碩士論文,國立中興大學水土保持學系。 15.褚炳麟、潘進明、張國雄(1996),「台灣西部卵礫石層現地之大地工程性質」,地工技術,第55 期,第47-58頁。 16.董家鈞、黃安斌(1996),「礫石土材料之力學試驗現況與展望」,地工技術,第55期,第59-70頁。 17.楊麗文(2000),「以顆粒材料力學探討卵礫石層強度性質之研究」,國立中興大學土木工程研究所博士論文。 18.鄭承昌、翁孟嘉、李宏輝(2010),「以分離元素法探討砂岩彈塑性變形特性之研究」,全國岩盤工程研討會,高雄,第407-416頁。 19.蔡秉儒(1997),「礫石形狀分布及其排列方式相對於邊坡穩定的關係」,土木水利,第22卷第一期,第19-38頁。 20.鄧屬予(1996),「台灣卵礫石層的地質背景」,地工技術,第55期,第5-24頁。 21.賴丞昶(2009),「地質材料參數最佳化及其於地滑行為分析之應用」,碩士論文,國立中興大學水土保持學系。 22.賴泊靖、徐松圻(2010),「以分離元素法模擬卵礫石層中地錨拉拔行為」,全國岩盤工程研討會,高雄,第P463-502頁。 23.劉亦酉(2002),「PB12設計的投影性質研究」,國立中央大學統計研究所碩士論文。 24.Baker, R. (2005). “Variational slope stability analysis of materials with nonlinear failure criterion.” The Electronic Journal of Geotechnical Engineering, Technion City. 25.Baker, R. (2004). “Non-linear strength envelopes based on triaxial data.” Journal of Geotechnical and Geoenvironmental Engineering, 130, 498-506. 26.Baker, R. (2006). “A relation between safety factors with respect to strength and height of slopes.” Computers and Geotechnics, 33, 275-277. 27.Coli, N., Berry, P. and Boldini, D. (2011). “In situ non-conventional shear tests for the mechanical characterization of a bimrock.” International Journal of Rock Mechanics and Mining Sciences, 48(1), 95-102. 28.Cundall, P. A. and Strack, O. D. L. (1979). “A discrete unmercal model for granular assemblies.” Geotechnique 1979, 29(1), 47-65. 29.Hoek, E. and Brown, E. T. (1980). “Empirical strength criterion for rock masses.” ASCE Journal of the Geotechnical Engineering Division, 106(9), 1013-1035. 30.Holtz, W. G. and Ellis, W. (1961). “Triaxial shear characteristics of clayey gravel soils.” Proc. the 50th Intern. Conf. on Soil Mech. And Found. Eng. vol. 1 , 143. 31.Iannacchione, A. T. and Vallejo, L. E. (2000). “Shear strength evaluation of clay-rock mixtures.” Geotechnical Special Publication, 101, 209-223. 32.Matheson, G. M. (1986). “Relationship between compacted rockfill density and gradation.” ASCE , Journal of Geotechnical Engineering, 11(12), 1119-1124. 33.Miller, E. A. and Sowers, G. F. (1957). “The strength characteristics of soil-aggregate mixtures.” Highway Research Board Bulletin, 183, 16–23. 34.Nusier, O. K., Almohd (Ayasrah ), I. M. and Jaradat, R. A. (2008). “Nonlinearity of Shear Strength and Stress-Strength Behavior and induced stress predictions.” International Conference on Construction and Building Technology, E, 43-52. 35.Potytndy, D. and Cundall, P. (2004). “A bonded-particle model for rock.” International Journal of Rock Mechanics and Mining Sciences, 41, 1329-1364. 36.Vallejo, L. E. and Zhou, Y. (1994). “The mechanical properties of simulated soil–rock mixtures.” Proc. the 13th Intern. Conf. on Soil Mech. and Found. Engrg, New Delhi, India, vol. 1, 365–368. 37.Walker, R. G. (1975). “Generalized fades models for resedimented conglomerates of turbidite association.” Geological Society of America Bulletin, 86, 737-748. 38.Yoon, J. (2007). “Application of experimental design and optimization to PFC model calibration in uniaxial compression simulation.” International Journal of Rock Mechanics and Mining Sciences, 44, 871-889.
摘要: 
卵礫石層在台灣廣泛分布,許多的開發與工程建設,都已進入卵礫石堆積層所覆蓋的盆地、台地或丘陵地,卵礫石層邊坡崩塌或土石流是值得重視的問題。其中,了解卵礫石層強度性質,對於工程建設與邊坡災害防治有顯著的影響。本研究調查卵礫石層邊坡的地質與地形特性,探討地質因子與卵礫石層強度的關聯性,以評估卵礫石層強度性質。

首先由野外量測卵礫石層粒徑分佈、卵礫石含量、卵礫石強度、基質強度等地質特性,再來經由DEM(數值高程模型)資料量取邊坡之地形特性如坡高與坡度,藉由非線性破壞準則,推估強度參數A與強度包絡線,使用線性複迴歸分析(Multiple Regression Model)建立這些地質因子和卵礫石層強度參數的關係。再來將現地調查資料,利用數值分析軟體PFC2D,進行雙軸試驗模擬,參數之給定選用UCODE最佳化與PB設計,透過迴歸分析建立微觀參數f(摩擦係數)、k(接觸勁度)之推估方程式。最後,加入不同地區資料,進行野外調查強度迴歸模型與數值分析模型驗證。

根據現地調查,影響卵礫石層強度重要性依序基質強度(qM)、卵礫石含量(CG)、粒徑大小(D30)、卵礫石強度(qG),由於基質強度重要性遠大於其他因子,所以在數值模擬中,選用此因子qM做為PFC參數主要變化依據。而PFC各微觀參數重要性依序是:摩擦係數(f),鍵結強度(bond),接觸勁度(k),f與k最後都是bond的函數。依照驗證結果,九九峰、三義、八卦野外調查強度迴歸模型之誤差率分別是-8.95%、-30.06%、-12.4%,數值分析模型之誤差率分別為-21.8%、19.6%、0.1%,其中以八卦台地驗證結果最佳。本研究驗證結果還不錯,在可接受範圍內。

Gravel layers are widely distributed in Taiwan. Lots of construction is located at gravel layers covered basins, mesas, or hills. Slope failure and debris flow are problems on gravel slopes. Understanding the mechanical behavior of gravel layers can help engineering construction and slope disaster prevention. In this study, geological and topographical characteristics of gravel formations were investigated to correlate geological factors and strength properties.
Geological factors include the size distribution of gravel formations, percentage of gravel volume, matrix strength and gravel strength. We measured topographical features of slopes such as height and inclination from DEM (Digital Elevation Model). The relationships between the geological factors and strength of gravel formations are established. The software PFC 2D is used to estimate strength of gravel formations. We use optimization and statistical design to determine the micro-parameters, which relate to geological factors in the field. The use of empirical model and the PFC model to estimate the strength of gravel formations are validated.
According to the field investigation, the factors that affect the strength of gravel layers are form greatest to lest, matrix strength (qM), gravel content (CG), particle size (D30), and gravel strength (qG). The major factor, matrix strength is selected to determine the micro-parameters f and k. The importance order of the micro-parameters of PFC is as follows: friction coefficient (f), bond strength (bond), contact with stiffness (k). The f and k are eventually functions of bond. The results of validation show that the error of the empirical model are -8.95%, -30.06% and -12.4% for Jiujiu Feng, Sanyi and Bagua Terrace. The error of the PFC model are -21.8%, 19.6 and 0.1%. Overall, the empirical model and the PFC model are demonstrated to satisfactorily estimate the strength of gravel formations.
URI: http://hdl.handle.net/11455/35096
其他識別: U0005-2807201116072500
Appears in Collections:水土保持學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.