Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35098
標題: 水庫集水區泥砂遞移率與整治率之評估研究
Evaluation of Sediment Delivery Ratio and Completeness Ratio of the Reservoir Watershed
作者: 賴益成
Lai, Yi-Cheng
關鍵字: 泥砂遞移率;sediment delivery ratio;整治率;泥砂遞移分佈模式;地形位態指標;completeness ratio;sediment delivery distributed (SEDD) model;topographic position index (TPI)
出版社: 水土保持學系所
引用: 石門水庫管理局,1990,「石門水庫集水區第二階段治理規劃」。 何智武、陳樹群、王文江,2000,「中小型水庫集水區治理規劃及成效評估研究」,經濟部水資源局。 吳建民,1991,「泥砂運移學」。 吳富春、王文江、徐享田,1998,「水庫集水區治理規劃與成效評估計畫」,經濟部水資源局。 吳富春、王文江、徐享田、張守陽,1999,「水庫集水區治理規劃與成效評估計畫(二)」,經濟部水資源局。 吳嘉俊,1994,「台灣水土保持因子之初步訂定」,中華水土保持學報,25(4),209~218。 吳嘉俊,1995,「台灣水土保持因子之訂定與坡長坡度之研究」,中美陡坡土壤流失量推估技術研討會論文輯,pp.117-134。 范正成,1995,「通用土壤流失公式在台灣地區應用之探討」,中美陡坡土壤流失量推估技術研討會論文輯,pp.1-52。 張三郎,1996,「治山防洪計畫之展望」,坡地防災研討會論文集。 連惠邦、蔡易達、段錦浩、王晉倫,2010,「集水區土砂整治率之修正及案例分析」,中華水土保持學報,41(1),85~90。 陳信雄,1982,「崩塌地調查及處理模式之研究」,中華林學季刊,15(2),33-59。 陳樹群、賴益成,1999,「河川與集水區泥砂遞移率之推估研究」,中華水土保持學報,30(1),47~57。 陳樹群、賴益成,2002,「集水區土砂整治率之推估研究」,第三屆海峽兩岸山地災害與環境保育研究研討會論文集,pp.369~380。 陳樹群、賴益成,2004,「水庫集水區土砂評量與整治率評估模式」,中華水土保持學報,35(1),53~67。 陳樹群、游繁結,2006,「石門水庫土砂評量與整治率評估模式建立」,行政院農業委員會水土保持局。 陳樹群、吳俊毅、吳岳霖、李育修,2007,「水土保持技術對土砂抑制成效之先驅研究」,行政院農業委員會水土保持局。 陳樹群、賴益成、王晉倫,2007,「石門水庫集水區泥砂治理之成效評估」,中華水土保持學報,38(2),173~184。 陳樹群、吳俊毅、吳岳霖、王士豪,2009,「GIS圖層及修正因子建置台灣通用土壤流失公式(TUSLE)—以石門水庫集水區為例」,中華水土保持學報,40(2),185~197。 景可等,1993,「黃河泥沙與環境」,科學出版社。 游繁結、周天穎、葉昭憲,1998,「集水區整治率之探討」,八十七年度水土保持及集水區經營研究計畫成果彙編,林業特刊第62號,175~191。 游繁結、周天穎、葉昭憲、賴如慧,1999,「集水區整治率評估模式之探討」,中華水土保持學報,30(2),137~147。 游繁結、周天穎、葉昭憲、林文賜,2002,「地理資訊系統於集水區防砂整治率估算之應用」,中華水土保持學報,33(1),1~9。 萬鑫森、黃俊德,1989,「台灣坡地土壤沖蝕」,中華水土保持學報,20(2),17。 經濟部水利署北區水資源局,2002,「大漢溪上游石門水庫集水區特性探討之研究」。 經濟部水利署北區水資源局,2006,「石門水庫集水區高解析數值高程模型資料庫前置建置計畫成果報告」。 歐陽元淳,2002,「水庫集水區土壤沖蝕之研究-以石門、翡翠水庫為例」,國立台灣大學地理環境資源學研究所碩士論文。 盧昭堯、蘇志強、吳藝昀,2005,「台灣地區年等降雨沖蝕指數圖之修訂」,中華水土保持學報,36(2),159~172。 錢寧,1985,「黃學研究前景廣闊」,人民黃河,6,6~8。 謝兆申、王明果,1991,「台灣地區主要土類圖輯」,國立中興大學土壤調查試驗中心。 日本建設省,1958,「河川砂防技術基準」。 打荻珠男,1971,「ひと雨による山腹崩壞について」,新砂防(79),21~34。 飛驒川濁水問題技術對策審議會,1981,「飛驒川濁水現象調查報告書」,中部電力株式會社。 Bagarello, V., Ferro, V., and Giordano, G., 1991, “Contributo Alla Valutazione Del Fattore Di Deflusso Di Williams Del Coefficiente Di Resa Solida Per Alcuni Bacini Idrografici Siciliani,” Rivista di Ingegneria Agraria, Anno XXII(4), 238-251(in Italian). Bagarello, V., Baiamonte, G., Ferro, V., and Giordano, G., 1993, “Evaluating the Topographic Factors for Watershed Soil Erosion Studies,” Proc. Workshop on Soil Erosion in Semi-arid Mediterranean Areas, 28-30 October Taormina, Italy, ed R.P.C. Morgan. Baltsavias, E. P., 1999, “A comparison between photogrammetry and laser scanning,” ISPRS Journal of Photogrammetry & Remote Sensing, 54, 83-94. Boyce, R. C., 1975, “Sediment Routing with Sediment Delivery Ratios,” In Present and Prospective Technology for Predicting Sediment Yields and Sources, U.S. Dept. Agric., Publ. ARS-S-40, pp.61-65. Brown, C. B., 1950, Sediment Transportation in Engineering Hydraulics, H. Rouse Ed., John Wiley and Sons Inc., New York, N.Y., p.771. Burns, R. G., 1979, An Improved Sediment Delivery Model for Piedmont Forests, Georgia Inst. Technol., Atlanta, Ca. De Vries, M., 1981, “On measurements of sediment transport in open channels,” In: South East Asia Reg. Symp. On Problems of Soil Erosion and Sedimentation, Special lecture, AIT, Bangkok, Thailand. Dickinson, W. T., Rudra, R. P., and Wall, G. J., 1986, “Identification of Soil Erosion and Fluvial Sediment Problems,” Hydrol. Proc., 1, 111-124. Dietrich, W. E., and Dunne, T., 1978, “Sediment Budget for a Small Catchment in Mountainous Terrain,” Zeitschr. fur Geomorph., Suppl., 29, 191-206. Ding, J., and Richards, K., 2009, “Preliminary modelling od sediment production and delivery in the Xihanshui River basin, Gansu, China,” Catena, 79, 277-287. Diodato, N., and Grauso, S., 2009, “An improved correlation model for sediment delivery ratio assessment,” Environ. Earth Sci., 59, 223-231. Dymond, J. R., Jessen, M. R., and Lovell, L. R., 1999, “Computer simulation of shallow landsliding in New Zealand hill country,” JAG, 1(2), 122-131. de Vente, J., Poesen, J., Verstraeten, G., Van Rompaey, A., and Govers, G., 2008, “Spatially distributed modeling of soil erosion and sediment yield at regional scales in Spain,” Global and Planetary Change, 60,393-415. Fan, J. C., and Lovell, C. W., 1988, “Slope steepness factor for predicting erosion on highway slopes,” Transportation Research Record 1188, TRB, National Research Council, Washington, D. C., pp.63-73. Fernandez, C., Wu, J. Q., McCool, D. K., and Stockle, C. O., 2003, “Estimating water erosion and sediment yield with GIS, RUSLE, and SEDD,” J. Soil and Water Conserv., 58(3), 128-136. Ferro, V., and Minacapilli, M., 1995, “Sediment Delivery Processes at Basin Scale,” Hydro. Sci. J., 40(6), 703-717. Ferro, V., 1997, “Further Remarks on a Distributed Approach to Sediment Delivery,” Hydrol. Sci. J., 42, 633-647. Foster, G. R., 1987, User Requirements, Usda~Water Erosion Prediction Project (Wepp). Glymph, L. M., 1954, Studies of Sediment Yields from Watersheds, IAHS, Publication, No.36, Wallingford, England, pp.173-191. Golubev, G. N., 1982, “Soil Erosion and Agriculture in the World: An Assessment and Hydrological Implications,” Hydrol. Sci., 137, 261-268. Hadley, R. F., and Shown, L. M., 1976, “Relation of Erosion to Sediment Yield,” Proceedings of the Third Federal Inter-Agency Sedimentation Conference, U.S. Water Resour. Counc., Washington, D. C., pp.1-132-131-139. Happ, S. C., Rittenhouse, G., and Dobson, G. C., 1940, “Some Principles of Accelerated Stream and Valley Sedimentation,” Technical Bulletin, 695, United States Department of Agriculture. Ikeya, H., 1981, “A method of designation for area in danger of debris flow,” Erosion and sediment transport in Pacific Rim Steeplands, Proc. of the Christchurch Symp., Int. Assoc. Hydrol. Sci., Publ. No. 132, 576-588. Imeson, A. C., 1974, “The Origin of Sediment in a Moorland Catchment with Particular Reference to the Role of Vegetation,” Fluvial Processes in Instrumented Watersheds. Inst. Brit. Geogr, Spec., Publ. 6, pp.59-72. Khazai, B., and Sitar, N., 2000, “Assessment of Seismic Slope Stability Using GIS Modeling,” Geographic Information Sciences, 6(2), 121-128. Kling, G. F., 1974, A Computer Model of Diffuse Sources of Sediment and Phosphorous Moving into a Lake, Ph.D. Thesis, Cornell University Ithaca, N.Y.. Lehre, A. K., 1981, “Sediment Budget of a Small Coast Range Drainage Basin,” Erosion and Sediment Transport in Pacific Rim Steeplands, IAHS, Publ., No.132, Wallingford, England, pp.123-139. Lehre, A. K., Swanson, F. J., Janda, R. J., Dunne, T., and Swanston, D. N., 1982, “Sediment Budget of a Small Coast Range Drainage Basin in North-Central California,” Sediment Budget and Routing in Forested Drainage Basins, General Technical Report, Pnw-141, Forest Service, U.S. Department of Agriculture Portland, Oregon. Lenhart, T., Van Rompaey, A. J. J., Steegen, A., Fohrer, N., Frede, H. G., and Govers, G., 2005, “Considering spatial distribution and deposition of sediment in limped and semi-distributed models,” Hydrological Processes, 19, 785-794. Li, R. M., 1979, “Water and sediment routing from watersheds,” Modeling of Rivers, pp.9.1-9.88. Lorente, A., Garc&iacute;a-Ruiz, J. M., and Beguer&iacute;a, S., 2002, “Factors explaining the spatial distribution of hillslope debris flows, A case study in the flysch sector of the Central Spanish Pyrenees,” Mountain Research and Development, 22(1), 32-39. Lu, H., Moran, C. J., and Prosser, I. P., 2004, “Modelling sediment delivery ratio based on physical principles,” Complexity and Integrated Resources Management, Transactions of the Second Biennial Meeting of the International Environmental Modelling and Software Society, vol. 3, 1117-1122. Lu, H., Moran, C. J., and Prosser, I. P., 2006, “Modelling sediment delivery ratio over the Murray Darling Basin,” Environmental Modelling & Software, 21, 1297-1308. Maner, S. B., and Barnes, L. H., 1953, Suggested Criteria for Estimating Gross Sheet Erosion and Sediment Delivery Rates for the Blackland Prairie Problem Area in Soil Conservation, U.S. Dept. of Agriculture, Soil Conservation Service, Port Worth, Texas. McCool, D. K., Brown, L. C., Foster, G. R., Mulchler, C. K., and Meyer, L. D., 1987, “Revised slope steepness factor for the universal soil loss equation,” Transaction of the ASAE, 30(5), 1387-1475. Phillips, J. D., 1986, “The Utility of the Sediment Budget Concept in Sediment Pollution Control,” Professional Geographer, 38, 246-252. Piest, R. F., Kramer, L. A., and Heinemann, H. G., 1975, “Sediment Movement from Loessiall Watersheds,” Present and Prospective Technology for Predicting Sediment Yields and Sources, Us Dept. Agric., Publ. Ars-S-40, pp.130-141. Prosser, I. P., Rutherfurd, I. D., Olley, J. M., Young, W. J., Wallbrink, P. J., and Moran C. J., 2001, “Large-scale patterns of erosion and sediment transport in river networks, with examples from Australia,” Marine and Freshwater Research, 52(1), 81-99. Richards, K., 1993, “Sediment Delivery and the Drainage Network,” Channel Network Hydrology, K. Beven & M. J., Kirkby Eds, New York John Wiley, USA, pp.221-254. Rickenmann, D., 1994, “An alternative equation for the mean velocity in gravel-bed rivers and mountain torrents,” Proceedings ASCE 1994 National Conference on Hydraulic Engineering, Buffalo N.Y., USA, Vol. 1, 672-676. Rickenmann, D., 1999, “Empirical relationships for debris flows,” Natural Hazards, 19, 47-77. Roehl, J. W., 1962, “Sediment Source Areas, Delivery Ratios and Influencing Morphological Factors,” Commission of Land Erosion, IAHS, Publ., No.59, pp.202-213. Scheidegger, A. E., 1973, “On the prediction of the reach and velocity of catastrophic landslides,” Rock Mechanics, 5, 231-236. Sivapalan, M., Tothityangkoon, C., and Menabde, M., 2001, “Linearity and non-linearity of basin response as a function scale: Discussion of alternative definitions,” Water Resour. Res., 24, 1001-1014. Takahashi, T., 1994, “Japan-China Joint Research on the Prevention from Debris Flow Hazards,” Research Report of Grant-in-Aid for Scientific Research, The Japanese Ministry of Education, Science and Culture, International Scientific Research Program, N0.03044085, March. Trimbel, S. W., 1983, “A Sediment Budget for Coon Creek in the Driftless Area, Wisconsin, 1853-1977,” Am. Journ. Sci., 283, 454-474. USDA-ARS(U.S. Department of Agriculture-Agricultural Research Service), 2002, <http://www.sedlab.olemiss.edu/rusle/>, (Accessed January 2002). Vandre, B. C., 1985, “Rudd Creek debris flow,” Delineation of landslide, flashflood, and debris flow hazards in Utah, Utah Water Research Laboratory, Utah State University, Logan, Utah. Vanoni, A. V., 1977, Sedimentation Engineering, ASCE Manuals & Reports on Engineering Practice, No.54, New York, USA. Wade, J. C., and Heady, E. O., 1978, “Measurement of Sediment Control Impacts on Agriculture,” Water Resour., 14, 1-8. Walling, D. E., 1983, “The Sediment Delivery Problem,” J. Hydrol., 65, 209-237. Walling, D. E., 1994, “Measuring Sediment Yield from River Basins,” Soil Erosion Research Methods, R. Lal, (ed.), 2nd edition, Soil and Water Conservation Society. Wischmeier, W. H., and Smith, D. D., 1958, “Evaluation of Factors in the Soil Loss Equation,” Agricultural Equation, 39, 458-462. Wischmeier, W. H., and Smith, D. D., 1978, “Predicting Rainfall Erosion Losses; a Guide to Conservation Farming,” U.S. Department of Agriculture Handbook, No.537. Zhou, W. and Wu, B., 2008, “Assessment of soil erosion and sediment delivery ratio using remote sensing and GIS: a case study of upstream Chaobaihe River catchment, north China,” International Journal of Sediment Research, 23, 167-173.
摘要: 
集水區中之泥砂因受到外力作用而產生沖蝕、搬運及堆積之現象,此可由集水區上游泥砂流失量和出口泥砂產量兩者間之顯著差異來說明。對於集水區之泥砂演算,目前已發展出不少的土壤沖蝕模式及河道輸砂公式來預估集水區之土壤沖蝕量和泥砂產量,而兩者間所存在之差距一般可以集水區泥砂遞移率(Sediment Delivery Ratio, SDR)來加以表示。
由於泥砂遞移率說明了集水區產砂條件之差異,可實際應用於集水區治理與土砂管理等議題,透過泥砂遞移分析有效反映集水區整治條件良窳與外在影響因素,因此成為集水區整治評量不可或缺的基礎指標。本研究依據泥砂遞移特性之數學意涵,建立泥砂坡地運移系統,且依不同尺度分別探討集水區及泥砂單元之泥砂遞移率,利用空間分佈理論分析影響坡地泥砂遞移之因子,並由地文、水文特性詮釋泥砂遞移過程,進而建置集水區泥砂遞移模型,透過遞移過程的分解及土砂模式的選用,探討集水區泥砂遞移參數之特性。泥砂遞移參數值愈小,集水區泥砂遞移能力愈高,所反應之泥砂遞移率值愈大。
水庫淤積量的變化常是反應集水區治理成效的重要指標之一,本研究乃利用有治理及無治理情況下之累積淤積曲線差異,具體說明集水區治理之減淤增容效益,並應用泥砂遞移參數率定結果,結合歷年之水庫淤積量、防砂壩攔砂量、投注經費等資料,進行整治率(Completeness Ratio, CR)之時變性分析。研究顯示集水區面積愈大,所反應集水區之整治率數值愈小;反之所投注治理經費愈高,所反應集水區之整治率數值則愈大。
本研究藉由探討石門水庫集水區的泥砂遞移率與整治率特性,以瞭解泥砂遞移的空間分佈,與整治率的長年演變,以及不同泥砂遞移參數的變化,在模擬整治前後產砂情境下所反應整治率的關聯性,並建立整治率目標值俾利後續治理規劃及成效評估之參考。

The surface soil in the watershed normally are eroded, transported and deposited by extrinsic force. This phenomenon can be explained from the apparent distinction between upstream soil erosion and sediment yield at the basin outlet. Nowadays, numerous soil erosion models and sediment transport equations have been developed for predicting the soil erosion and sediment yield in the watersheds, and the gap of them can be expressed by the Sediment Delivery Ratio (SDR).
Owing to the effective analysis of SDR, which explains the gap between the soil erosion and sediment yield in the watersheds, it can be practically applied to the discussion of watershed and sediment management. By the analysis of sediment delivery, SDR can effectively reflect the good and bad conditions of the watershed and the extrinsic affected factors; and therefore SDR becomes the basic index for the evaluation of watershed management. The study establishes a hillsides sediment delivery system according to the mathematic equation characteristics of SDR. The system discusses the SDR of the watershed and sediment units by different scales. By spatial distribution theory we analyze the affecting factor of sediment delivery and using physiographic and hydrologic characteristics explains the process of sediment delivery and further establishes a watershed sediment delivery model. Using the decomposing of delivery process and the adoption of sediment model we explore the characteristics of parameters of sediment delivery. The smaller the value of the sediment delivery parameters is, the higher the capability of the watershed sediment delivery carries, and so forth the greater the value of the reflective SDR.
The change of the amount of reservoir sedimentation is often the index of the effect of watershed management. This study aims to compare the difference of management and non-management sediment curves to specifically explain the effectiveness of sediment-decreased and capacity-increased and further apply the result of SDR combining with yearly amount of reservoir sedimentation, amount of sediment storage dam, and the amount funds invested in, etc. to make a time-variance analysis of Completeness Ratio (CR). The study shows that the bigger the areas of the watershed are, the smaller the value of the watershed CR; on the contrary, the higher the funds invested, the greater the value of the watershed CR is.
The study tries to find out the spatial distribution of SDR and the long-term changes of CR by investigating SDR and CR of the Shimen reservoir. After changing parameters of sediment delivery then we can evaluate the relatedness of CR between before- and after-management and make a CR goal to help follow-up management plan and for effect-evaluation reference.
URI: http://hdl.handle.net/11455/35098
其他識別: U0005-2808201111375700
Appears in Collections:水土保持學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.