Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35358
DC FieldValueLanguage
dc.contributor.advisor盛中德zh_TW
dc.contributor.advisorSHENG CHUNG TEHen_US
dc.contributor.author周子豪zh_TW
dc.contributor.authorHAO, CHOU TZUen_US
dc.date2000zh_TW
dc.date.accessioned2014-06-06T07:52:01Z-
dc.date.available2014-06-06T07:52:01Z-
dc.identifier.urihttp://hdl.handle.net/11455/35358-
dc.description.abstract本研究的目的主要在整合以往研究成果,發展一部全自動、無人操作之施藥機,本控制系統以8051單晶片微電腦為中心,以線性位置轉換尺及油壓缸控制施藥機方向輪轉向角度,在行走控制可分為直線行走及換畦轉彎,在直線行走控制所使用感測器,包含超音波感測器、電子羅盤、以及反射式光電開關,應用非線性規劃方向輪修正延時所建立數學的模式,找出合適延時模式,並將此模式程式化加入控制系統中,改善施藥機的直線行走,轉彎換畦作業應用感測器為陣列式磁簧開關及磁鐵,在轉彎的起點及終點擺設磁鐵,以完成施藥機的轉彎換畦作業。 由試驗結果得知,施藥機以2.12km/hr的作業速度,穩定的行走在行寬300cm至350cm、行走距離3300公分、株距100公分至200公分、非對稱的植行內,並且成功的完成行走控制。zh_TW
dc.description.abstractThe objective of this study is to integrate the achievements of past relevant studies to develop a fully automatic sprayer, which can automatically travel and operate in a selected field. A single chip microprocessor 8051 is selected to be the control unit, optical linear position ruler and a hyduaulic system are adopted to control the driving wheel of spraying. The developed travel control mode includes straight movement along plant rows and turning movement to shift plant row. In straight movement, the sprayer uses the nonlinear planning method to establish the delay adjustment pattern for driving wheels. The developed adjustment pattern can improve the travel direction adjustment function by detecting the angle between sprayer body direction and travel direction. The ultrasonic sensors, electronic compass and reflective photoelectric switch are adopted in the sprayer to control its straight movement. A matrix of reel switches and magnetic irons are used to control its turning motion. The sprayer is fully tested in a designed experimental field, of which width between two plant rows is from 300cm to 350cm, and distance between two plants in a row is from 100cm to 200cm. The length of selected test field is 3300cm. The field test results show the sprayer can travel and spray well with a speed of 2.12km/hr.en_US
dc.description.tableofcontents謝 誌II 摘 要III AbstractIV 目 錄V 圖目錄VIII 表目錄XI 表目錄XI 第一章 前言12 第二章 文獻探討14 2-1車體結構14 2-1-1油壓管路設計14 2-1-2驅動及轉向系統15 2-2導引方式15 2-2-1機械式導引15 2-2-2電磁式導引16 2-2-3光學式導引16 2-2-4無線電導引17 2-2-5超音波導引17 2-2-6智慧型之導引19 2-3定位系統20 2-3-1電子羅盤導引20 2-3-2 DGPS訊號接收系統22 2-4安全防護裝置25 第三章 實驗設備與方法27 3-1試驗設備27 3-1-1自動化施藥機架構27 3-2中央控制系統35 3-3控制系統作業流程38 3-3-1直線路徑修正程式39 3-3-2轉彎程序42 3-4建立方向輪修正模式44 3-4-1建立目標函數46 3-4-2建立限制條件50 3-4-3非性線規劃的演算過程51 3-4-4控制模式程式化52 3-5硬體電路設計53 3-5-1 8051單晶片微電腦及其週邊晶片組53 3-5-2電子羅盤驅動電路53 3-6模擬試驗場地56 第四章 實驗方法57 4-1磁鐵性能測試57 4-2非線性規劃應用於施藥機行走測試57 4-3施藥機直行自動導引行走性能試驗58 4-3-1植株配置方式對直行軌跡之影響58 4-3-2株距對施藥機行走之影響59 4-3-3起始點偏移之影響60 4-4施藥機轉彎換畦性能試驗61 4-4-1磁鐵位置對施藥機轉彎角度之影響62 4-4-2連續轉彎換畦性能測試63 第五章 結果與討論65 5-1磁鐵性能測試65 5-2非線性規劃應用於施藥機行走測試66 5-3施藥機直行自動導引行走性能試驗70 5-3-1植株配置方式對施藥機之影響70 5-3-2株距對施藥機行走之影響76 5-3-3起始點偏移之影響80 5-4施藥機轉彎換畦性能試驗86 5-4-1磁鐵位置對施藥機轉彎角度之影響86 5-4-2連續轉彎換畦性能測試91 第六章 結論與建議114 6-1結論114 6-2建議116 第七章 參考文獻117 附錄一122 附錄二143zh_TW
dc.language.isoen_USzh_TW
dc.publisher農業機械工程學系zh_TW
dc.subjectSprayeren_US
dc.subject施藥機zh_TW
dc.subjectNonlinear planningen_US
dc.subjectUltrasonic sensoren_US
dc.subjectElectronic compassen_US
dc.subjectReel switchen_US
dc.subject非線性規劃zh_TW
dc.subject超音波感測器zh_TW
dc.subject電子羅盤zh_TW
dc.subject磁簧開關zh_TW
dc.title棚架果園自動化施藥機行走控制之研究zh_TW
dc.titleThe Study on Travel Control of An Automatic Sprayer in A Trellis Fruit Fielden_US
dc.typeThesis and Dissertationzh_TW
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.grantfulltextnone-
item.fulltextno fulltext-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
Appears in Collections:生物產業機電工程學系
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.