Please use this identifier to cite or link to this item:
標題: 活性污泥系統處理家禽屠宰廢水之性能及程序動力
Performance and process kinetics of an activated-sludge reactor system treating poultry slaughterhouse wastewater
作者: 蕭庭訓
Hsiao, Ting-Hsun
關鍵字: 家禽屠宰廢水;poultry slaughterhouse wastewater;活性污泥;污泥齡;程序動力;模式驗證;參數敏感度;activated sludge, mean cell residence time;process kinetics;model validation;parametric sensitivity.
出版社: 生物產業機電工程學系所
引用: 千種薰。1996。図說,微生物による水質管理,產業用水調查會。 日本下水道協會。1990。日本の下水道‧日本東京都:建設省都市局下水道部。 行政院農業委員會。2009。農業統計年報。行政院農業委員會編印。 行政院農業委員會。2010。農業統計年報。行政院農業委員會編印。 行政院環境保護署。2007。水污染防治法規。行政院環境保護署環境保護人員訓練所編印。 李亞新。2007。活性污泥法理論與技術。中國建築工業出版社。 經濟部工業局。1995。廢水處理功能生物診斷技術。經濟部工業局編印 Aguilar, M. I., J. Saez, M. Llorens, A. Soler and J. F. Ortuno. 2002. Nutrient removal and sludge production in the coagulation– flocculation process. Water Res. 36: 2910–2919. Al-Mutairi, N. Z., F. A. Al-Sharifi and S. B. Al-Shammari. 2008. Evaluation study of a slaughterhouse wastewater treatment plant including contact-assisted activated sludge and DAF. Desalination 225: 167–175. Amorim, A. K. B., I. R. de Nardi and V. Del Nery. 2007. Water conservation and effluent minimization: Case study of a poultry slaughterhouse. Resources, Conservation and Recycling 51(1): 93–100. APHA. 1998. Standard Methods for the Examination of Water and Wastewater, 19th ed., American Public Health Association, American Water Works Association, Water Environment Federation, Washington, DC. Bailey, J. E. and D. F. Ollis. 1986. Biochemical engineering fundamentals. 2nd edition. McGraw-Hill, New York. Benefield, L. D. and C. W. Randall. 1980. Biological Process Design for Wastewater Treatment. Prentice-Hall Inc., New Jersey. Bhat, P., M. S. Kumar, S. N. Mudliar and T. Chakrabarti. 2006. Biodegradation of tech-hexachlorocyclohexane in an upflow anaerobic sludge blanket (UASB) reactor. Bioresource Technology 97: 824–830. Bratby, J. R. 1978. Aspects of sludge thickening by dissolved air flotation. Water Pollut. Control. 77: 421. Caixeta, C. E. T., M. C. Cammarota and A. M. F. Xavier. 2002. Slaughterhouse wastewater treatment: evaluation of a new three-phase separation system in a UASB reactor. Bioresource Technology 81: 61–69. Cao, W. and M. Mehrvar. 2011. Slaughterhouse wastewater treatment by combined anaerobic baffled reactor and UV/H2O2 processes. Chemical Engineering Research and Design 89(7): 1136–1143. Cassidy, D. P. and E. Beliz. 2005. Nitrogen and phosphorus removal from an abattoir wastewater in a SBR with aerobic granular sludge. Water Res. 39(19): 421–426. Chan, Y. J., M. F. Chong, C. L. Law and D.G. Hassell. 2009. A review on anaerobic–aerobic treatment of industrial and municipal wastewater. Chemical Engineering Journal 155(1-2): 1–18. Chávez, P. C., L. R Castillo, L. Dendooven, and E. M. Escamilla-Silva. 2005. Poultry slaughter wastewater treatment with an up-flow anaerobic sludge blanket (UASB) reactor. Bioresource Technology 96: 1730–1736. Chen, C. K., S. L. Lo and R. S. Lu. 2005. Feasibility Study of an Activated Sludge/Contact Aeration Combined System. Environ. Eng. Sci. 22(4): 479–488. Chou, H. H., J. S. Huang, J. H. Jheng and R. Ohara. 2008b. Influencing effect of granular sludge bed reactors treating an inhibitory substrate. Bioresource Technology 99: 3403–3410. Chou, H. H., J. S. Huang, W. G. Chen and R. Ohara. 2008a. Competitive reaction kinetics of sulfate-reducing bacteria and methanogenic bacteria in anaerobic filters. Bioresource Technology 99: 8061–8067. Collins, C. F. and F. P. Incorpera. 1978. The effect of temperature control on biological wastewater treatment process. Water Res. 12: 547–557. Contreras, E. M., L. Giannuzzi and N. E. Zaritzky. 2000. Growth kinetics of the filamentous microorganism Sphaerotilus natans in a model system of a food industry wastewater. Water Res. 34: 4455–4463. Cook, W. B. 1986. The occurrence of fungi in activated sludge. Proc. 23th Purdue Ind. Waste Conference, Purdue University. 132–140. de Nardi, I. R., T.P. Fuzi and V. Del Nery. 2008. Performance evaluation and operating strategies of dissolved-air flotation system treating poultry slaughterhouse wastewater. Resources, Conservation and Recycling 52: 533–544. Debik, E. and T. Coskun. 2009. Use of the static granular bed reactor (SGBR) with anaerobic sludge to treat poultry slaughterhouse wastewater and kinetic modeling. Bioresource Technology 100: 2777–2782. Del Nery, V., E. Pozzi, M. H. R. Z. Damianovic, M. R. Domingues and M. Zaiat. 2008. Granules characteristics in the vertical profile of a full-scale upflow anaerobic sludge blanket reactor treating poultry slaughterhouse wastewater. Bioresource Technology 99: 2018–2024. Del Nery, V., I. R. de Nardi, M. H. R. Z. Damianovic, E. Pozzi, A. K. B. Amorim and M. Zaiat. 2007. Long-term operating performance of a poultry slaughterhouse wastewater treatment plant. Resources, Conservation and Recycling 50(1): 102–114. Del Pozo, R. and V. Diez. 2003. Organic matter removal in combined anaerobic–aerobic fixed-film bioreactors. Water Res. 37: 3561–3568. Del Pozo, R. and V. Diez. 2005. Integrated anaerobic-aerobic fixed-film reactor for slaughterhouse wastewater treatment, Water Res. 39: 1114–1122. Del Pozo, R., V. Diez and G. Salazar. 2004. Nitrogen and organic matter removal from slaughterhouse wastewater in a lab-scale aerobic fixed-film bioreactor. Environmental Technology 25(6): 713– 721. Demuynck, C., P. A.Vanrolleghem, C. Mingneau, J. Liessens and W.Verstraete, 1994. NDBEPR process optimization in SBRs: reduction of external carbon source and oxygen supply. Water Sci. Technol. 30(4): 169–179. Eremektar, G., C. Ubay¸ E. Okgör, S. Ővez, F. B. Germirli and D. Orhon. 1999. Biological treat ability of poultry processing plant effluent – a case study. Water Sci. Technol. 40(1): 323–329.. Fongsatitkul, P., D. G. Wareham, P. Elefsiniotis and P. Charoensuk. 2011. Treatment of a slaughterhouse wastewater: effect of internal recycle rate on COD, TKN and TP removal. Environmental Technology 32(1):(in press). Ford, D. L. and W. W. Eckenfelder. 1967. Effect of process variable on sludge floe formation and setting characteristics. J. WPCF. 39(12): 1850–1859. Gaudy, A. F. 1980. Microbiology for environment scientistic and engineers. McGraw-Hill, Inc., New York. Gaudy, A. F. and B. G. Turer. 1980. Effect of air flow rate response of activated sludge to quantitative shock loading. J. WPCF. 36(5): 767–781. Gerardi, M. H. 2006. Wastewater Bacteria. Wiley-Interscience, New Jersey. pp. 19–31. Halwachs, W. 1987. Km and Vmax from only experiment. Biotechnology Bioeng. 20: 281–285. Hickey, R., W. Wu, R. Jones and M. C. Veiga. 1992. The start-up, operation, monitoring and control of high-rate anaerobic treatment systems, Water Science and Technology 24: 207–255. Huang, J. S., C. C. Tsai, H. H. Chou and W. H. Ting. 2006. Simulation modeling for nitrogen removal and experimental estimation of mass fractions of microbial groups in single sludge system. Chemosphere 62: 61–70. Huang, J. S., C. G. Jih and T. J. Sung. 1999. Performance enhancement of suspended-growth reactors with photorophs. J. Envir. Eng. 125: 501–507. Huang, J. S., C. G. Jih, S. D. Lin and W. H. Ting. 2003. Process kinetics of UASB reactors treating non-inhibitory substrate. J. Chem. Technol. Biotechnol. 78: 762–772. Huang, J. S., C. S. Wu, C. G. Jih and C. T. Chen. 2001. Effect of addition of Rhodobacter sp. to activated-sludge reactors treating piggery wastewater. Water Res. 125: 3867–3875. Johns, M. R. 1995. Developments in wastewater treatment in the meat processing industry: A review. Bioresource Technology 54(3): 203-216. Kim, H. N., O. J. Hao and J. S. McAvoy. 2001. SBR system for phosphorus removal: linear model based optimization, J. Envir. Eng. 127(2): 105–111. Kist, L. T., S. E. Moutaqi and Ê. L. Machado. 2009. Cleaner production in the management of water use at a poultry slaughterhouse of Vale do Taquari, Brazil: a case study. Journal of Cleaner Production 17: 1200–1205. Latkar, M., K. Swaminathan and T. Chakrabarti. 2003. Kinetics of anaerobic biodegradation of resorcinol catechol and hydroquinone in upflow fixed film–fixed bed reactors. Bioresource Technology 88: 69–74. Lawrence, A. W. and P. L. McCarty. 1970. Unified basis for biological treatment design and operation. J. Sanitary Eng. Div. (ASCE). 96: SA3: 757. Leslie Grady, Jr. C. P., G. T. Daigger and H. C. Lim. 1999. Biological Wastewater Treatment. 2nd ed. CRC Press. Lovett, D. A. and S. M. Travers. 1986. Dissolved air flotation for abattoir wastewater. Water Res. 20(4):421–426. Massé, D. I. and L. Massé. 2000. Characterization of wastewater from hog slaughterhouses in Eastern Canada and evaluation of their in-plant wastewater treatment systems. Can. Agr. Eng. 42(3): 139–46. Metcalf and Eddy, Inc. 1995. Wastewater Engineering. III ed. New Delhi: Tata McGraw-Hill. Metcalf and Eddy, Inc., G. Tchobanoglous, F. Burton, H. D. Stensel. 2003. Wastewater Engineering: Treatment and Reuse. 4th eds. McGraw Hill. Mittal, G. S. 2006. Treatment of wastewater from abattoirs before land application—a review. Bioresource Technology 97: 1119-1135. Monod, J. 1949. The growth of bacterial cultures. Annual Rev. Microbiol. 3 : 371–394. Ndon, U. J. and R.R. Dague. 1997. Effects of temperature and hydraulic retention time on anaerobic sequencing batch reactor treatment of low-strength wastewater. Water Res. 31: 2455–2466. Northcutt, J. K. and D. R. Jones. 2004. A survey of water use and common industry practices in commercial broiler processing facilities. Journal of Applied Poultry Research 13:48–54. Park, H. D. and D. R. Noguera. 2004. Evaluating the effect of dissolved oxygen on ammonia-oxidizing bacterial communities in activated sludge. Water Res. 38: 3275–3286. Press, W. H., B. P. Flannery, S. A. Tenkolsky and W. T. Vetterling. 1986. Numerical Recipes: the Art of Scientific Computing, Cambridge University Press, London, UK.. Raj, D. S. S. and Y. Anjaneyulu. 2005. Evaluation of biokinetic parameters for pharmaceutical wastewaters using aerobic oxidation integrated with chemical treatment, Process Biochem. 40: 165–175. Rebac, S., S. Gerbens, P. Lens, J. B. van Lier, A. J. M. Stams, K. J. Keesman and G. Lettinga. 1999. Kinetics of fatty acid degradation by psychrophilically grown anaerobic granular sludge. Bioresource Technology 69: 241–248. Ruiz, I., M. C. Veiga, P. de Santiago and R. Blázquez. 1997. Treatment of slaughterhouse wastewater in a UASB reactor and an anaerobic filter. Bioresource Technology 60(3): 251–258. Rusten, B., B. Eikebrokk and G. Thorvaldsen. 1990. Coagulation as pretreatment of food industry wastewater. Water Sci. Technol. 22(9): 1–8. Sheng, G. P., H. Q. Yu and H. Cui. 2008. Model-evaluation of the erosion behavior of activated sludge under shear conditions using a chemical-equilibrium-based model. Chemical Engineering Journal 140: 241–246. Torkian, A., A. Eqbali and S.J. Hashemian. 2003. The effect of organic loading rate on the performance of UASB reactor treating slaughterhouse effluent. Resources, Conservation and Recycling 40: 1–11. Tritt, W. P. and F. Schuchardt. 1992. Materials flow and possibilities of treating liquid and solid wastes from slaughterhouses in Germany. Bioresource Technology 41: 235–245. US-EPA. 2002. Environmental assessment of proposed effluent limitations guidelines and standards for the meat and poultry products industry point source. EPA-821-B-01008, Office of Water, US Environmental Protection Agency, Washington, DC.
By taking their averages, the BOD and COD concentrations of poultry slaughterhouse wastewater obtained from a field surrey were 551 and 1127 mg/L, respectively. Poultry slaughterhouse wastewater with such a high BOD/COD ratio of 0.49 discloses that it can be appropriately treated by biological processes. In this work, two small-scale activated sludge reactor (ASR) systems were used. In order to generate practical experimental data and explore the process kinetics of the ASR systems treating poultry slaughterhouse wastewater, two different organic loading rats (0.76 and 1.52 kg COD/m3-d) were operated. At each organic loading rate, four test runs proceeded by varying four different mean cell residence time (θc) (ranging from 4.6 to 24.3 d). Thus, practical performance data of the ASR systems can be obtained. In addition, biomass can also be removed from the steady-state ASRs to evaluate all essential kinetic parameter values (k, Ks, YT, Kd, a and b; required in Monod-model calculation) using the batch reactor method. When the ASR systems were maintained at the same organic loading rate but with four different θc between 4.6 and 24.3 d, the F/M ratio (0.31-1.13 kg COD/kg VSS-d) decreased with increasing θc; the SOUR value (15-33 mg O2/g VSS-h) decreased moderately with increasing θc or decreasing F/M ratio. The obtained maximum specific substrate utilization rate (k) and half saturation constant (Ks) values were 1.7-3.6 mg COD/mg VSS-d and 78-89 mg COD/L, respectively. The k value decreased with increasing θc or decreasing F/M ratio, whereas the Ks value varied slightly with different θc. The obtained true yield coefficient (YT) and decay coefficient (Kd) were 0.34-0.36 mg VSS/mg COD and 0.08-0.16 d-1, respectively. The obtained oxygen-use coefficients for substrate degradation and microbial synthesis (a) and for energy of maintenance (b) were 0.60-0.63 mg O2/mg COD and 0.12-0.19 d-1, respectively. The calculated COD residual concentrations and COD removal efficiencies using the Monod model were 18-39 mg COD/L and 94.8%-97.6%, respectively. The calculated results agree well with the experimental measurements (21-49 mg COD/L; 93.5%-97.2%), implying that Monod kinetics describes well substrate removal rate in the ASR systems treating poultry slaughterhouse wastewater. By respectively varying each parameter value from -100% to +100%, △S/S was linearly sensitive to Ks in the △P/P range of -100% to +100%, but △S/S was highly sensitive to k in the △P/P range of 0% to -40%.

經現場調查結果,小規模家禽屠宰廠廢水之BOD及COD平均濃度分別為551及1127 mg/L,BOD/COD比值高至0.49顯示出家禽屠宰廢水頗適合採用生物處理法。本研究使用小型活性污泥系統模廠處理家禽屠宰廠廢水。爲建立活性污泥系統處理家禽屠宰廢水之實用性操作數據及探討活性污泥系統之程序動力,活性污泥系統共操作兩個不同有機負荷率(0.76及1.52 kg COD/m3-d),且在每一有機負荷率下亦陸續改變四個不同污泥齡(範圍為4.6~24.3 d)各進行四個試程,除了可獲得活性污泥系統操作數據外,亦可從穩定狀態下之活性污泥反應器取出污泥混合液,以批次實驗方法探求Monod動力模式計算所需之生物動力參數(k、Ks、YT、Kd、a及b)。研究結果顯示,活性污泥系統在固定有機負荷率,但不同污泥齡(θc = 4.6~24.3 d)之操作條件下,食微比(0.31~1.13 kg COD/kg VSS-d)隨污泥齡之增加而降低,比攝氧率(SOUR)隨污泥齡之提高或食微比(F/M)之降低而降低,最大比基質利用速率(k)及半飽和常數(Ks)分別為1.7~3.6 mg COD/mg VSS-d 及78~89 mg COD/L之間,k值隨污泥齡之增加或食微比之降低而降低、Ks值則隨污泥齡之增加而些微變化。微生物真實生長係數(YT)及微生物衰減係數(Kd)分別為0.34~0.36 mg VSS/mg COD及0.08~0.16 d-1,微生物用於基質降解及自身生長之供氧係數a 及微生物用於維持生命所需能量之供氧係數b分別為0.60~0.63 mg O2/mg COD及0.12~0.19 d-1之間。以Monod模式模擬計算之出流水COD液相濃度及COD去除率(18~39 mg COD/L;94.8%~97.6%)與實驗值(21~49 mg COD/L;93.5%~97.2%)之相對偏差僅 -0.8%~2.1%,顯示Monod動力模式及本研究所建立之生物動力參數,可供模擬活性污泥系統處理家禽屠宰廢水之出流水COD濃度。此外,為瞭解Monod生物動力參數(k、Ks)對活性污泥系統去除基質之影響,乃進行參數敏感度分析,藉改變其中一項生物動力參數值(ɄP/P)在+100%~-100%範圍內,即可膫解該生物動力參數對系統出流水COD液相濃度變化(ɄS/S)之影響,結果顯示Ks值在ΔP/P範圍從 -100%到 +100%時,呈線性關係較不敏感,但k值在ΔP/P範圍從0%到 -40%時,具高度敏感。
其他識別: U0005-1908201113030800
Appears in Collections:生物產業機電工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.