Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3549
標題: 利用大腸桿菌雙精胺酸轉位系統輸送鹼性磷酸酶之研究
Translocation of alkaline phosphatase via the Tat pathway in Escherichia coli
作者: 黃冠傑
Huang, Guan-Jie
關鍵字: twin-arginine translocation;雙精胺酸轉位系統;periplasm;disulfide bond;alkaline phosphatase;細胞間質;雙硫鍵;鹼性磷酸酶
出版社: 化學工程學系所
引用: A. Bolhuis, J. E. Mathers, J. D. Thomas, C. M. Barrett, C. Robinson. TatB and TatC from a functional and structural unit of the twin-arginine translocase from Escherichia coli, J. Biol. Chem. 276(2001):20213-20219. Alami M, Trescher D, Wu LF, Muller M. 2002. Separate analysis of twin-arginine translocation (Tat)-specific membrane binding and translocation in Escherichia coli. J Biol Chem 277(23):20499-503. Alami, M. et al. 2003. Differential interactions between a twin-arginine signal peptide and its translocase in Escherichia coli. Mol. Cell 12, 937-946. Allen SC, Barrett CM, Ray N, Robinson C. 2002. Essential cytoplasmic domains in the Escherichia coli TatC protein. J Biol Chem 277(12):10362-6. Baneyx F, Mujacic M. 2004. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22(11):1399-408. Behrendt, J. et al. 2004. Topological studies on the twin-arginine translocase component TatC. FEMS Microbiol. Lett. 234, 303-308. Berg BL, Li J, Heider J, Stewart V. 1991. Nitrate-inducible formate dehydrogenase in Escherichia coli K-12. I. Nucleotide sequence of the fdnGHI operon and evidence that opal (UGA) encodes selenocysteine. J Biol Chem 266(33):22380-5. Berks, B.C., 1996. A common export pathway for proteins binding complex redox cofactors? Mol. Microbiol. 22, 393-404. Berks BC, Palmer T, Sargent F. 2003. The Tat protein translocation pathway and its role in microbial physiology. Adv Microb Physiol 47:187-254. Berks BC, Palmer T, Sargent F. 2005. Protein targeting by the bacterial twin-arginine translocation (Tat) pathway. Curr Opin Microbiol 8(2):174-81. Berks BC, Sargent F, Palmer T. 2000. The Tat protein export pathway. Mol Microbiol 35(2):260-74. Bessette PH, Aslund F, Beckwith J, Georgiou G. 1999. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc Natl Acad Sci U S A 96(24):13703-8. Bogsch EG, Sargent F, Stanley NR, Berks BC, Robinson C, Palmer T. 1998. An essential component of a novel bacterial protein export system with homologues in plastids and mitochondria. J Biol Chem 273(29):18003-6. Bolhuis A, Mathers JE, Thomas JD, Barrett CM, Robinson C. 2001. TatB and TatC form a functional and structural unit of the twin-arginine translocase from Escherichia coli. J Biol Chem 276(23):20213-9. Boyd, D., C.-D. Guan, S. Willard, W. Wright, K. Strauch, and J. Beckwith. 1987. Enzymatic activity of alkaline phosphatase precursor depends on its cellular location, p. 89-93. In A. Torriani-Gorini, F. G. Rothman, S. Silver, A. Wright, and E. Yagil (ed.), Phosphate metabolism and cellular regulation in microorganisms. American Society for Microbiology, Washington, D.C. Bruser T, Sanders C. 2003. An alternative model of the twin arginine translocation system. Microbiol Res 158(1):7-17. Buchanan G, Leeuw E, Stanley NR, Wexler M, Berks BC, Sargent F, Palmer T. 2002. Functional complexity of the twin-arginine translocase TatC component revealed by site-directed mutagenesis. Mol Microbiol 43(6):1457-70. Buchanan G, Sargent F, Berks BC, Palmer T. 2001. A genetic screen for suppressors of Escherichia coli Tat signal peptide mutations establishes a critical role for the second arginine within the twin-arginine motif. Arch Microbiol 177(1):107-12. Chalmers, J. J., Kim, E., Telford, J. N., Wong, E. Y., Tacon, W. c., Shuler, M. L., Wilson, D.B. (1990). Effects of temperature on Escherichia coli overproducing beta-lactamase or human epidermal growth factor. Appl Environ Microbiol. Jan; 56(1): 104-11. Choi JH, Lee SY. 2004. Secretory and extracellular production of recombinant proteins using Escherichia coli. Appl Microbiol Biotechnol 64(5):625-35. Clark SA, Theg SM. 1997. A folded protein can be transported across the chloroplast envelope and thylakoid membranes. Mol Biol Cell 8(5):923-34. Cohen, S.N., Chang, A.C., Hsu, L., 1972. Nonchromosomal antibiotic resistance in bacteria: genetic transformation of Escherichia coli by R-factor DNA. Proc. Natl. Acad. Sci. U.S.A. 69, 2110-2114. Cristobal S, de Gier JW, Nielsen H, von Heijne G. 1999. Competition between Sec- and TAT-dependent protein translocation in Escherichia coli. Embo J 18(11):2982-90. Dalbey RE. 1991. Leader peptidase. Mol Microbiol 5(12):2855-60. Dalbey RE, Chen M. 2004. Sec-translocase mediated membrane protein biogenesis. Biochim Biophys Acta 1694(1-3):37-53. Dalbey RE, Heijne Gv, editors. 2002. Protein targetin, transport & translocation. de Leeuw E, Granjon T, Porcelli I, Alami M, Carr SB, Muller M, Sargent F, Palmer T, Berks BC. 2002. Oligomeric properties and signal peptide binding by Escherichia coli Tat protein transport complexes. J Mol Biol 322(5):1135-46. DeLisa MP, Tullman D, Georgiou G. 2003. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc Natl Acad Sci U S A 100(10):6115-20. den Blaauwen T, Driessen AJ. 1996. Sec-dependent preprotein translocation in bacteria. Arch Microbiol 165(1):1-8. Dilks K, Rose RW, Hartmann E, Pohlschroder M. 2003. Prokaryotic utilization of the twin-arginine translocation pathway: a genomic survey. J Bacteriol 185(4):1478-83. Dreusch A, Burgisser DM, Heizmann CW, Zumft WG. 1997. Lack of copper insertion into unprocessed cytoplasmic nitrous oxide reductase generated by an R20D substitution in the arginine consensus motif of the signal peptide. Biochim Biophys Acta 1319(2-3):311-8. Drew D, Sjostrand D, Nilsson J, Urbig T, Chin CN, de Gier JW, von Heijne G. 2002. Rapid topology mapping of Escherichia coli inner-membrane proteins by prediction and PhoA/GFP fusion analysis. Proc Natl Acad Sci U S A 99(5):2690-5. Driessen AJ, Fekkes P, van der Wolk JP. 1998. The Sec system. Curr Opin Microbiol 1(2):216-22. DuBose, R. F., and D. L. Hartl. 1991. Evolutionary and structural constraints in the alkaline phosphatase of E. coli, p. 50-76. In R. K. Selander, A. G. Clark, and T. S. Whitman (ed.), Evolution at the molecular level. Sinauer Associates, Sunderland, Mass. Dyck MK, Lacroix D, Pothier F, Sirard MA. 2003. Making recombinant proteins in animals--different systems, different applications. Trends Biotechnol 21(9):394-9. Faury D, Saidane S, Li H, Morosoli R. 2004. Secretion of active xylanase C from Streptomyces lividans is exclusively mediated by the Tat protein export system. Biochim Biophys Acta 1699(1-2):155-62. Fisher AC, DeLisa MP. 2004. A little help from my friends: quality control of presecretory proteins in bacteria. J Bacteriol 186(22):7467-73. Garen A., Levinthal C. 1960. A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. coli. I. Purification and characterization of alkaline phosphatase. Biochim Biophys Acta. Mar 11; 38: 470-83. Genest O, Ilbert M, Mejean V, Iobbi-Nivol C. 2005. TorD, an essential chaperone for TorA molybdoenzyme maturation at high temperature. J Biol Chem 280(16):15644-8. Georgiou G, Valax P. 1996. Expression of correctly folded proteins in Escherichia coli. Curr Opin Biotechnol 7(2):190-7. Gouffi K, Gerard F, Santini CL, Wu LF. 2004. Dual topology of the Escherichia coli TatA protein. J Biol Chem 279(12):11608-15. Gouffi K, Santini CL, Wu LF. 2002. Topology determination and functional analysis of the Escherichia coli TatC protein. FEBS Lett 525(1-3):65-70. Gross R, Simon J, Kroger A. 1999. The role of the twin-arginine motif in the signal peptide encoded by the hydA gene of the hydrogenase from wolinella succinogenes. Arch Microbiol 172(4):227-32. Halbig D, Wiegert T, Blaudeck N, Freudl R, Sprenger GA. 1999. The efficient export of NADP-containing glucose-fructose oxidoreductase to the periplasm of Zymomonas mobilis depends both on an intact twin-arginine motif in the signal peptide and on the generation of a structural export signal induced by cofactor binding. Eur J Biochem 263(2):543-51. Hoffman, D. S., and A. Wright. 1985. Fusions of secreted proteins to alkaline phosphatase: an approach for studying protein secretion. Proc. Natl. Acad. Sci. USA 82:5107-5111. Michaelis, S., H. Inouye, D. Oliver, and J. Beckwith. 1983. Mutations that alter the signal sequence of alkaline phosphatase in Escherichia coli. J. Bacteriol. 154:366-374. I. Porcelli, E. de Leeuw, R. Wallis, E. van den Brink-van der Laan, B. de Kruijff, B.A. Wallace, T. Palmer, B.C. Berks, Characterization and membrane assembly of the TatA component of the Escherichia coli twin-arginine protein transport system, Biochemistry 41 (2002) 13690-13697. Ignatova Z, Hornle C, Nurk A, Kasche V. 2002. Unusual signal peptide directs penicillin amidase from Escherichia coli to the Tat translocation machinery. Biochem Biophys Res Commun 291(1):146-9. Ilbert M, Mejean V, Giudici-Orticoni MT, Samama JP, Iobbi-Nivol C. 2003. Involvement of a mate chaperone (TorD) in the maturation pathway of molybdoenzyme TorA. J Biol Chem 278(31):28787-92. Ilbert M, Mejean V, Iobbi-Nivol C. 2004. Functional and structural analysis of members of the TorD family, a large chaperone family dedicated to molybdoproteins. Microbiology 150(Pt 4):935-43. Jack RL, Buchanan G, Dubini A, Hatzixanthis K, Palmer T, Sargent F. 2004. Coordinating assembly and export of complex bacterial proteins. Embo J 23(20):3962-72. Jack RL, Sargent F, Berks BC, Sawers G, Palmer T. 2001. Constitutive expression of Escherichia coli tat genes indicates an important role for the twin-arginine translocase during aerobic and anaerobic growth. J Bacteriol 183(5):1801-4. Jeong KJ, Lee SY. 2000. Secretory production of human leptin in Escherichia coli. Biotechnol Bioeng 67(4):398-407. Jongbloed JD, Grieger U, Antelmann H, Hecker M, Nijland R, Bron S, van Dijl JM. 2004. Two minimal Tat translocases in Bacillus. Mol Microbiol 54(5):1319-25. Kaback, H.R., 1971. Bacterial membranes. Methods Enzymol. 22, 99-120. Kim, E. E., and H. W. Wyckoff 1989. Structure and function of alkaline phosphatases. Structure of alkaline phosphatases. Clin. Chim. Acta 186:175-188. Lee PA, Buchanan G, Stanley NR, Berks BC, Palmer T. 2002. Truncation analysis of TatA and TatB defines the minimal functional units required for protein translocation. J Bacteriol 184(21):5871-9. Li Si-Yu, Bang-Yang Chang, Sung-Chyr Lin. 2005. Coexpression of TorD enhances the transport of GFP via the TAT pathway. Journal of Biotechnology. Makrides SC. 1996. Strategies for achieving high-level expression of genes in Escherichia coli. Microbiol Rev 60(3):512-38. Matthew P. DeLisa, Danielle Tullman, and George Georgiou. 2003. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. PNAS vol. 100, no. 10,6115-6120. Mejean V, Iobbi-Nivol C, Lepelletier M, Giordano G, Chippaux M, Pascal MC. 1994. TMAO anaerobic respiration in Escherichia coli: involvement of the tor operon. Mol Microbiol 11(6):1169-79. Mergulhao FJ, Summers DK, Monteiro GA. 2005. Recombinant protein secretion in Escherichia coli. Biotechnol Adv 23(3):177-202. Mitraki A., King J. (1989). Protein folding intermediates and inclusion body formation, Biotechnology, 7:690-697. Muller M. 2005. Twin-arginine-specific protein export in Escherichia coli. Res Microbiol 156(2):131-6. Oates J, Mathers J, Mangels D, Kuhlbrandt W, Robinson C, Model K. 2003. Consensus structural features of purified bacterial TatABC complexes. J Mol Biol 330(2):277-86. Oresnik IJ, Ladner CL, Turner RJ. 2001. Identification of a twin-arginine leader-binding protein. Mol Microbiol 40(2):323-31. Palmer T, Berks BC. 2003. Moving folded proteins across the bacterial cell membrane. Microbiology 149(Pt 3):547-56. Palmer T, Sargent F, Berks BC. 2004. Light traffic: photo-crosslinking a novel transport system. Trends Biochem Sci 29(2):55-7. Palmer T, Sargent F, Berks BC. 2005. Export of complex cofactor-containing proteins by the bacterial Tat pathway. Trends Microbiol 13(4):175-80. Papish AL, Ladner CL, Turner RJ. 2003. The twin-arginine leader-binding protein, DmsD, interacts with the TatB and TatC subunits of the Escherichia coli twin-arginine translocase. J Biol Chem 278(35):32501-6. Paschke M, Hohne W. 2005. A twin-arginine translocation (Tat)-mediated phage display system. Gene 350(1):79-88. Piatak M, Lane JA, Laird W, Bjorn MJ, Wang A, Williams M. (1988). Expression of soluble and fully functional ricin A chain in Escherichia coli is temperature-sensitive. J. Biol. Chem. 263(10): 4837-43. Ritz D, Beckwith J. 2001. Roles of thiol-redox pathways in bacteria. Annu Rev Microbiol 55:21-48. Robinson C, Bolhuis A. 2001. Protein targeting by the twin-arginine translocation pathway. Nat Rev Mol Cell Biol 2(5):350-6. Rodrigue A, Chanal A, Beck K, Muller M, Wu LF. 1999. Co-translocation of a periplasmic enzyme complex by a hitchhiker mechanism through the bacterial tat pathway. J Biol Chem 274(19):13223-8. Sandkvist M. 2001. Biology of type II secretion. Mol Microbiol 40(2):271-83. Santini CL, Bernadac A, Zhang M, Chanal A, Ize B, Blanco C, Wu LF. 2001. Translocation of jellyfish green fluorescent protein via the Tat system of Escherichia coli and change of its periplasmic localization in response to osmotic up-shock. J Biol Chem 276(11):8159-64. Santini CL, Ize B, Chanal A, Muller M, Giordano G, Wu LF. 1998. A novel sec-independent periplasmic protein translocation pathway in Escherichia coli. Embo J 17(1):101-12. Sargent F, Bogsch EG, Stanley NR, Wexler M, Robinson C, Berks BC, Palmer T. 1998. Overlapping functions of components of a bacterial Sec-independent protein export pathway. Embo J 17(13):3640-50. Sargent F, Gohlke U, De Leeuw E, Stanley NR, Palmer T, Saibil HR, Berks BC. 2001. Purified components of the Escherichia coli Tat protein transport system form a double-layered ring structure. Eur J Biochem 268(12):3361-7. Sargent F, Stanley NR, Berks BC, Palmer T. 1999. Sec-independent protein translocation in Escherichia coli. A distinct and pivotal role for the TatB protein. J Biol Chem 274(51):36073-82. Schmidt FR. 2004. Recombinant expression systems in the pharmaceutical industry. Appl Microbiol Biotechnol 65(4):363-72. Settles AM, Yonetani A, Baron A, Bush DR, Cline K, Martienssen R. 1997. Sec-independent protein translocation by the maize Hcf106 protein. Science 278(5342):1467-70. Spence E, Sarcina M, Ray N, Moller SG, Mullineaux CW, Robinson C. 2003. Membrane-specific targeting of green fluorescent protein by the Tat pathway in the cyanobacterium Synechocystis PCC6803. Mol Microbiol 48(6):1481-9. Stanley NR, Palmer T, Berks BC. 2000. The twin arginine consensus motif of Tat signal peptides is involved in Sec-independent protein targeting in Escherichia coli. J Biol Chem 275(16):11591-6. Thomas JD, Daniel RA, Errington J, Robinson C. 2001. Export of active green fluorescent protein to the periplasm by the twin-arginine translocase (Tat) pathway in Escherichia coli. Mol Microbiol 39(1):47-53. Tjalsma H, Bolhuis A, Jongbloed JD, Bron S, van Dijl JM. 2000. Signal peptide-dependent protein transport in Bacillus subtilis: a genome-based survey of the secretome. Microbiol Mol Biol Rev 64(3):515-47. Tracy Palmer and Ben C. Berks. (2003). Moving folded proteins across the bacterial cell membrane. Microbiology, 149, 547-556. Tschantz WR, Dalbey RE. 1994. Bacterial leader peptidase 1. Methods Enzymol 244:285-301. Turner RJ, Papish AL, Sargent F. 2004. Sequence analysis of bacterial redox enzyme maturation proteins (REMPs). Can J Microbiol 50(4):225-38. Van den Berg B, Clemons WM, Jr., Collinson I, Modis Y, Hartmann E, Harrison SC, Rapoport TA. 2004. X-ray structure of a protein-conducting channel. Nature 427(6969):36-44. Walsh G. 2003. Biopharmaceutical benchmarks--2003. Nat Biotechnol 21(8):865-70. Weiner JH, Bilous PT, Shaw GM, Lubitz SP, Frost L, Thomas GH, Cole JA, Turner RJ. 1998. A novel and ubiquitous system for membrane targeting and secretion of cofactor-containing proteins. Cell 93(1):93-101. Wexler M, Bogsch EG, Klosgen RB, Palmer T, Robinson C, Berks BC. 1998. Targeting signals for a bacterial Sec-independent export system direct plant thylakoid import by the delta pH pathway. FEBS Lett 431(3):339-42. Wexler M, Sargent F, Jack RL, Stanley NR, Bogsch EG, Robinson C, Berks BC, Palmer T. 2000. TatD is a cytoplasmic protein with DNase activity. No requirement for TatD family proteins in sec-independent protein export. J Biol Chem 275(22):16717-22. Yen MR, Tseng YH, Nguyen EH, Wu LF, Saier MH, Jr. 2002. Sequence and phylogenetic analyses of the twin-arginine targeting (Tat) protein export system. Arch Microbiol 177(6):441-50. Zhang Z, Gildersleeve J, Yang YY, Xu R, Loo JA, Uryu S, Wong CH, Schultz PG. 2004. A new strategy for the synthesis of glycoproteins. Science 303(5656):371-3.
摘要: 
近年來發現的蛋白輸送系統,雙精胺酸轉位系統(twin-arginine translocation,簡稱 Tat),為僅將摺疊完全並具酵素活性之蛋白自細胞質(cytoplasm)輸送至細胞間質(periplasm),進而使得蛋白易於純化回收。以往,大腸桿菌中含有雙硫鍵(disulfide bonds)之蛋白,利用舊有之蛋白輸系統,Sec 系統,將蛋白輸送至細胞間質後再進行摺疊程序,並形成適當配對之雙硫鍵,雖然過去的文獻指出 Sec 系統輸送基因重組蛋白之效率往往比 Tat 系統理想,但並非藉由 Sec 系統可獲得較高之酵素活性。本實驗以具有雙硫鍵之大腸桿菌鹼性磷酸酶(alkaline phosphatase,簡稱 AP)作為模型蛋白進行探討,研究發現,利用 Tat 系統輸送 AP 蛋白,其所測得之酵素活性相較於利用 Sec 系統來得低,而本實驗更進ㄧ步地利用共表現 TorD 蛋白預期增加利用 Tat 系統輸送 AP 蛋白的效率,結果證實此方法並無法獲得更多 AP 蛋白之酵素活性。

Twin-arginine translocation pathway is a novel system for the secretion of proteins into the periplasm of Gram-negative bacteria such as Escherichia coli. Sec pathway has long been exploited for protein secretion due to its well studied mechanism and high translocation efficiency. However, it is not capable of translocating folded proteins. On the contrary, it has recently been shown that the twin-arginine translocation (TAT) pathway is capable of translocating fully folded, disulfided proteins. In light of the potential applications of protein secretion for the production of recombinant proteins on industrial scales, a systematic study comparing the Sec pathway and Tat pathway for the secretion of a dimeric, disulfided protein, alkaline phosphatase, was conducted. In this study, it is demonstrated the Sec pathway is a superior system for the secretion of the model protein. It is also shown that the co-expression of TorD does not enhance the translocation of alkaline phosphatase via the Tat pathway in Escherichia coli.
URI: http://hdl.handle.net/11455/3549
其他識別: U0005-0408200613404500
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.