Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35496
標題: 以CFDRC模擬分析不同基材微管道高寬比對於EOF現象引起之流速分佈之影響
Analysis and Simulation on the Relationship between Aspect Ratio and the Velocity Distribution Induced by the EOF Phenomenon Using CFDRC
作者: 陳柏欽
Chen, Bo-Chin
關鍵字: rectangular channel;矩形微管道;aspect ratio;electroosmotic flow;zeta potential;different material;高寬比;電滲流;zeta電位;不同材質
出版社: 生物產業機電工程學系所
引用: 1. Altria K. D.and C. F. Simpson. 1988. Anal. Roc. (London), 23: 453. 2. Arulanandam S., D. Li. 2000. Liquid transport in rectangular microchannels by electroosmotic pumping. Colloids and Surface A: Physicochemical and Engineering. 161: 89-102. 3. Athavale M. M., H. Q. Yang and A. J. Przekwas. 1999. Coupled Fluid-Thermal-Structural Simulation In Microvalves And Microchannels. Technical Proceeding of the 1999 International Conference on Modeling and Simulation of Microsystems MSM 99. 570-573 4. Bard A. J. and R. F. Larry. 2001. Electrochemical Methods Fundamentals and Applications. 2nd ed. U.S.A. John Wiley & Sons. 5. Bächmann K., J. Boden and I. Haumann. 1992. Indirect fluorimetric detection of alkali and alkaline earth metal ions in capillary zone electrophoresis with cerium(III) as carrier electrolyte. Journal of Chromatography A. 626: 259-265. 6. Chao Y. C. and C. W. Whang. 1994. Capillary zone electrophoresis of eleven priority phenols with indirect fluorescence detection. Journal of Chromatography A. 663: 229-237. 7. Cohen A. S. and B. L. Karger. 1987. High-performance sodium dodecyl sulfate polyacrylamide gel capillary electrophoresis of peptides and proteins. Journal of Chromatography A. 397: 409-417. 8. Dolník V. and J. Dolníkova. 1995. Capillary zone electrophoresis of organic acids in serum of critically ill children. Journal of Chromatography A. 716: 269-277. 9. Ewa D. Z. and F. D. Joseph. 1994. Capillary zone electrophoresis with indirect UV detection of organic anions using 2,6-naphthalenedicarboxylic acid. Journal of Chromatography A. 685: 145-153. 10. Hogan B. L. and E. S. Yeung. 1992. Etermination of intracellular species at the level of a single erythrocyte via capillary electrophoresis with direct and indirect fluorescence detection. Analytical Chemistry. 64: 2841-2845. 11. Hsu J. P., C. Y. Kao, S. J. Tseng and C. J. Chen. 2002. Electrokinetic Flow through an Elliptical Microchannel: Effects of Aspect Ratio and Electrical Boundary Conditions. Journal of Colloid and Interface Science. 248: 176-184. 12. Huan J. K. and H. C. Tseng. 2001. Transient Electrokinetic Flow in Fine Capillaries. Journal of Colloid and Interface Science. 242: 450-459. 13. Huang X., M. J. Gordon, R. N. Zare. 1988. Current-monitoring method for measuring the electroosmotic flow rate in capillary zone electrophoresis. Analytical Chemistry., 60: 1837-1838. 14. Hywel M. and N. G. Green. 2003. AC electrokineticscolloids and nanoparticles. Philadelphia, PA :Research Studies Press 15. James W. J., D. L. Krynn. 1981. Zone electrophoresis in open-tubular glass capillaries. Analytical Chemistry. 53: 1298 - 1302. 16. Joern S. and P. M. Ueland. 1995. Application of Capillary Electrophoresis with Laser-Induced Fluorescence Detection for Determination of Methylmalonic Acid in Human Serum. Analytical Chemistry. 67: 812-819. 17. Jong I. J., H. J. Oh, S. R. Kim and S. H. Lee. 2005. CFD-based modeling of the hydrodynamic production process of polymeric microfibers and an experimental evaluation. Journal of micromechanics and microengineering. 15: 601-607. 18. Joseph P., C. Cottin-Bizonne, J.-M. Benoıˆt, C. Ybert, C. Journet, P. Tabeling, and L. Bocquet. 2006. Slippage ofWater Past Superhydrophobic Carbon Nanotube Forests in Microchannels. Physical Review Letters. 97:156104. 19. Kang Y., C. Yang and X. Y. Huang. 2002. Electroosmotic Flow in a Capillary Annulus with High Zeta Potentials. Journal of Colloid and Interface Science. 253: 285-294. 20. Kurt S., D. J. Harrison and A. Manz. 1993. Planar glass chips for capillary electrophoresis: repetitive sample injection, quantitation, and separation efficiency Analytical Chemistry. 65: 1481-1488. 21. Lin J.Y., L. M. Fu and R. J. Yang. 2002. Numerical simulation of electrokinetic focusing in microfluidic chips. Journal of micromechanics and microengineering. 12: 955-961. 22. Lin C. E., C. C. Chang, W. C. Lin and E. C. Lin. 1996. Capillary zone electrophoretic separation of β-blockers using citrate buffer at low pH. Journal of Chromatography A. 753: 133-138. 23. Lurie I. S., R. F. X. Klein, T. A. D. Cason, M. J. LeBelle, R. Brenneisen and R. E. Weinberger. 1994. Chiral Resolution of Cationic Drugs of Forensic Interest by Capillary Electrophoresis with Mixtures of Neutral and Anionic Cyclodextrins. Analytical Chemistry. 66: 4019-4026. 24. Makhijani V. B., A. J. Reich, A. Puntambekar and C. Hong. 2001. Simulation of Flow in structurally programmable microfluidic Channels. Modeling and Simulation of Microsystems. Vol: 266-269. 25. Morgan H. and N. G. Green. 2003. AC electrokinetics colloids and nanoparticles. Philadelphia. PA :Research Studies Press. 26. Patankar N. A., H. H. Hu. 1998. Numerical Simulation of Electroosmotic Flow. Analytical Chamistry. 70: 1870-1881. 27. Paul P. H., D. W. Arnold and D. J. Rakestraw. 1998. Electrokinetic generation of high pressures using porous microstructures. MicroTAS 98, Banff, Canada. 28. Qian D. and A. Lawal. 2006. Numerical study on gas and liquid slugs for Taylor flow in a T- junction microchannel. Chemical Engineering Science. 61: 7609 - 7625. 29. Reuss F. F. 1809. Sur un nouvel effect de l''électricité glavanique. Mémoires de la Societé Impériale des Naturalistes de Moscu, 2, 327-337. 30. Sadr R. and M. Yoda. 2006. Velocity measurements inside the diffuse electric double layer in electro-osmotic flow. Applied Physics Letters. 89: 044103. 31. Shigeru T., K. Otsuka, K. Ichikawa, A. Tsuchiya and T. Ando. 1984. Electrokinetic separations with micellar solutions and open-tubular capillaries. Analytical Chemistry. 56: 111-113. 32. Stellan H. and M. Zhu. 1985. Adaptation of the equipment for high-performance electrophoresis to isoelectric focusing. Journal of Chromatography A. 346: 265-270 33. SU8-2000 Data Sheet. 2007. Microchem. 34. SU8-3000 Data Sheet. 2007. Microchem. 35. Sung W. C., G. B. Lee , P. C. Liao and S. H. Chen., 2001. “Electrophoretic Microchips”, Chemistry(The Chinese Chem. Soc., Taipei) 59: 423-428. 36. Swaile D. F. and M. J. Sepaniak. 1991. Determination of metal ions by capillary zone electrophoresis with on-column chelation using 8-hydroxyquinoline-5-sulfonic acid. Analytical Chemistry. 63: 179-184. 37. Tiselius A. 1937. A New Apparatus for Electrophoretic Analysis of Colloidal Mixtures. Transaction of the Faraday Society. 33: 524-531. 38. Tsai C. H., C. H. Tai, L. M. Fu and F. B. Wu. 2005. Experimental and numerical analysis of the geometry effects of low- dispersionturns in microfluidic systems. Journal of micromechanics and microengineering. 15: 377-385. 39. Tsuda T., G. Nakagawa, M. Sato, K. J. Yagi. 1983. Journal of Applied Biochemistry. 5: 330-336. 40. Wheeler A. R., G. Trapp, O. Trapp, R. N. Zare. 2004. Electroosmotic flow in a poly(dimethylsiloxane) channel does not depend on percent curing agent. Electrophoresis, 25: 1120-1124. 41. Wu C.C., R. G. Wu, J. G. Huang, Yu. C. Lin and H. C. Chang. 2003. Three-electrode electrochemical detector and platinum film decoupler integrated with capillary electrophoresis microchip for amperometric detection. Analytical Chemistry. 75: 947-952. 42. Xuan X., D. Li. 2005. Electroosmotic flow in microchannels with arbitrary geometry and arbitrary distribution of wall charge. Journal of Colloid and Interface Science, 289: 291-303 43. Yang C., D. Li and J. H. Masliyah. 1998. Modeling forced liquid convection in rectangular microchannels with electrokinetics effects. International Journal of Heat and Mass Transfer. 41: 4229-4249. 44. Yang C., C. B. Ng and V. Chan. 2002. Transient Analysis of Electroosmotic Flow in a Slit Microchannel. Journal of Colloid and Interface Science. 248: 524-527. 45. Yang J. and D.Y. Kwok. 2003. Effect of liquid slip in electrokinetic parallel-plate microchannel flow. Journal of Colloid and Interface Science. 260: 225-233. 46. Yang R. J., L. M. Fu and Y. C. Lin. 2001. Electroosmotic Flow in Microchannels. Journal of Colloid and Interface Science. 239: 98-105. 47. Zak K. S. 1999. Capillary electrophoresis of double-stranded DNA in an untreated capillary. Journal of Chromatography A. 853: 349-354.
摘要: 
In the detection of biomedical and biochemistry, the microfluidic chips play an important role. In order to improve the efficiency for the detection, the investigation on the velocity field must is a must. Because the different aspect ratio and the different material of the microchannel could change the velocity field, then the detecting efficiency of the microfluidic chips could be affected. Therefore, the objectives of this research were (1) to model the velocity field caused by electroosmotic flow in the rectangular microchannel, (2) to fix the cross-section area value and alter the aspect ratio of the microchannel to study the variation of the velocity field, and (3) to change the material of the bottom channel wall, and to study the variation in the microchannel associated with different aspect ratio at a fixed value of cross-section area.
According to results of both the numerical simulation and experiment, in the rectangular microchannel that each channel wall was built of the same material, the velocity field in the microchannel was maining influenced by the zeta potential on the channel wall but not to the aspect ratio. In the rectangular microchannel which the material of bottom channel wall was varied to others, the zeta potential was still a major influence, however the velocity field was also influenced by the area of the bottom channel wall. In addition,for the bottom channel wall using different material to others, the result showed that the distance (Hi), which influenced by zeta potential in the velocity field on the bottom channel wall, was equal to the width of the bottom channel wall (W).

在生醫生化檢測上,微流體晶片扮演著重要的角色,為增進其檢測效率,有必要對微管道中之流場進行研究,因為不同微管道高寬比與不同管道基材的結合,有可能致使管道內之流場產生變化,而影響微流體晶片之檢測品質,故本研究之目的為(1)針對矩形微管道中電滲流(electroosmotic flow, EOF)之流場進行模擬;(2)固定矩形微管道之截面積,改變微管道之高寬比,探討矩形微管道中之流場之變化;及(3)改變微管道底面管壁之材質,討論相同截面積但不同高寬比對矩形微管道內流場分佈之影響。
由軟體模擬配合實驗之結果顯示,在管壁材質均相同的矩形微管道中,管道內之流場,主要是受到管壁上zeta potential(ζ電位)的影響,高寬比對於流場則幾無影響;在底面管壁材質不同的矩形微管道中,管壁上之zeta potential仍為主要的影響因子,但微管道內之流場變化亦會隨著不同材質之底面管壁的面積大小而有所改變。另外,研究結果顯示,不同材質之底面管壁,其zeta potential在流場內所能影響之距離(Hi)約等同於底面管壁之寬度(W)。
URI: http://hdl.handle.net/11455/35496
其他識別: U0005-2708200714575600
Appears in Collections:生物產業機電工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.