Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35502
標題: 微電極應用於水中微溶氧量之研究
Study on Dissolved Oxygen of Water with Microelectrodes
作者: 洪明鴻
Hung, Ming-Hung
關鍵字: microelectrode;微電極;dissolved oxygen;clams;溶氧量;文蛤
出版社: 生物產業機電工程學系所
引用: 1. 田福助。1993。電化學原理與應用。八版。p224-p231。台北:高立圖書有限公司。 2. 中華民國台灣地區漁業年報。1995-2006。行政院農委會漁業署。台北。 3. 巫文隆。1980。台灣重要食用雙殼貝類研究。貝類學報。7:101-114。 4. 何曉琛,2001,文蛤養殖池水層及底泥層中物質濃度之垂直分佈與季變異。碩士論文。台北:臺灣大學農業工程學研究所。 5. 吳書瑜,2006,探討文蛤(Meretrix lusoria)之保肝功能研究。碩士論文。基隆:國立臺灣海洋大學食品科學研究所。 6. 侯文祥、游政勳。2005。低造價溶氧感測器之研發。農業工程學報 51(4):40-53。 7. 郭仁傑,2005,台灣地區文蛤養殖生產技術效率分析。碩士論文。基隆:國立臺灣海洋大學應用經濟研究所。 8. 劉富光、周昱翰、郭仁傑、黃福銘、陳鴻儀、何雲達、戴仁祥。2001。雲嘉地區主要貝類繁養殖技術彙集。文蛤養殖篇。初版。p.111-p.124。基隆市:農委會水試所。 9. 劉健明。1989。貝類養殖技術。五洲出版社。P.330-p.337。 10. 簡卉菁,2004,利用微加工技術製造溶氧微感測器。碩士論文。台南:國立成功大學化學工程研究所。 11. Archer, D., E. Steven and R. S. Craig. 1989. Direct measurement of the diffusive sublayer at the deep sea floor using oxygen microelectrodes. Nature. 340: 623-626. 12. Bard, Allen J. and L. R. Faulkner. Electrochemical Methods: Fundamentals and Applications. John Wiley & Sons. 2000. 13. Belanger, S. E. 1991. The effect of dissolved oxygen, sediment, and sewage treatment plant discharges upon growth, survival and density of Asiatic clams.Hydrobiologia. 218: 113-126. 14. Bezbaruah, A. N. and T. C. Zhang. 2002. An innovative electro-corrosion recess creation technique for improved microelectrode fabrication. Water Research. 36: 4428-4432. 15. Bishop, P. L. and Y. Tonga. 1999. A microelectrode study of redox potential change in biofilms. Water Science and Technology. 39(7): 179-185. 16. Borsuk, M. E., S. P. Powers and C. H. Peterson. 2002. A survival model of the effects of bottom-water hypoxia on the population density of an estuarine clam (Macoma balthica). Canadian Journal of Fisheries & Aquatic Sciences.59(8): 1266-1274. 17. Clark L. C., JR., W. Richard, D. Granger, Z. Taylor. 1953. Continuous Recording of Blood Oxygen Tensions by Polarography. Journal of Applied Physiology. 6: 189-193. 18. Elberling, B. and L. R. Damgaard. 2001. Microscale measurements of oxygen diffusion and consumption in aubaqueous sulfide tailings. Geochimica et Cosmochimica Acta. 65(12): 1897-1905. 19. Gopel, W., J. Hesse, , and J. N. Zemel, Sensor. VCH Verlaysgesellschaft mbH, New York, 1991,61. 20. Hamwi A. and H. H. Haskin .1969.Oxygen Consumption and Pumping Rates in the Hard Clam Mercenaria mercenaria: A Direct Method.Science,New Series,163 (3869):823-824. 21. Hibiya, K., J. Nagai, S. Tsuneda and A. Hirata. 2004. Simple prediction of oxygen penetration depth in biofilms for wastewater treatment. Biochemical Engineering Journal.19: 61-68. 22. Janata, J., Principles of Chemical Sensors, Plenum Press, New York,1989. 23. Jørgensen, B. B. and Niel Peter Revsbech . 1985. Diffusive boundary layers and the oxygen uptake of sediments and detritus. Limnology and Oceanography. 30(1): 111-122. 24. Koudelka-Hep, M. and P. D. van der Wal. 2000. Microelectrodes sensors for biomedical and environmental applications. Electrochimica Acta.45: 2437-2441. 25. Larsen, L. H. , L. R. Damgaardl, T. KJár, T. Stenstrém, A. Lynggaard-Jensen and N. P. Revsbech. 2000. Fast Responding Biosensor for On-Line Determination of Nitrate/Nitrite in Activated Sludge. Water Research. 34(9): 2463-2468. 26. Lee A. C.,M.C. Lee, S. M. Chen and T. S. Chin, 2005. Temperature , pH , Mg+2 and Aerial Exposure Time Affect the Oxygen Consumption of Hard Clam (Meretrix lusoria). Journal of Fisheries Society of Taiwan. 32(4): 301-309. 27. Lee Y. H., T. T. George and C. W. Phillip, 1978. Ultraicroprobe methode for investigating mass transfer through gas-liquid interfaces. Industrial and engineering chemistry fundamentals. 17(1): 59-66 28. Lu, R. and T. Yu. 2002. Fabrication and evaluation of an oxygen microelectrode applicable to environmental engineering and science. Journal of Environmental Engineering and Science.1: 225-235. 29. Mazouni, N., J. C. Gaertner, J. M. Deslous-Paoli, S. Landrein, M. G. d’Oedenberg.1996. Nutrient and oxygen exchanges at the water-sediment interface in a shellfish farming lagoon (Thau, France). Journal of Experimental Marine Biology and Ecology. 205: 91-113. 30. Meijer, L. E. and Y. Avnimelech. 1999. On the use of micro-electrodes in fish pond sediments. Aquacultural Engineering.21: 71-83. 31. Rasmussen, K. and Z. Lewandowski. 1998. The Accuracy of Oxygen Flux Measurements Using Microelectrodes. Water Research.32(12): 3747-3755. 32. Revsbech, N. P., J. Sφrensen and T. H. Blackburn. 1980. Distribution of oxygen in marine sediments measured with microelectrodes. Limnology and Oceanography. 25(3): 403-411. 33. Revsbech, N. P. and D. M. Ward. 1983. oxygen microelectrode that is insensitive to medium chemical composition:use in an acid microbial mat dominated by cyanidium caldarium. applied and environmental microbiology. 45(3): 755-759. 34. Revsbech, N. P.. 1989. An oxygen microsensor with a guard cathode. Limnology and Oceanography. 34(2): 474-478. 35. Revsbech, N. P., B. B. Jorgensen and T. H. Blackburn. 1980. oxygen in the sea Bottom Measured with a Microelectrode. Science. 207(4437): 1355-1356. 36. Rosa, C. de la and T. Yu. 2006. Development of an automation system to evaluate the three-dimensional oxygen distribution in wastewater biofilms using microsensors. Sensors and Actuators B. 113: 47-54. 37. Schulz, H. N., and D. de Beer. 2002. Uptake Rates of Oxygen and Sulfide Measured with Individual Thiomargarita namibiensis Cells by Using Microelectrodes. Applied and Environment Microbiology. 68(11): 5746-5749. 38. Sobral, P., and J. Widdows. 1997. Influence of hypoxia and anoxia on the physiological responses of the clam Ruditapes decussates from southern Portugal. Marine Biology. 127: 455-461. 39. ŠTULÍK K., CHRISTIAN A., KAREL H., VLADIMÍR M., and WŁODZIMIERZ K. 2000. Microelectrodes. definitions, characterization, and applications. Pure and Applied Chemistry. 72(8): 1483-1492. 40. Suzuki, H., H. Taishi, W. Ikutomoand and K. Yuji.2001.Determination of blood pO2 using a micromachined Clark-type oxygen electrode. Analytica Chimica Acta 431:249-259. 41. Taillefert, M., G. W. Luther Ⅲ, and D. B. Nuzzio. 2000. The Application of Electrochemical Tools for In Situ Measurements in Aquatic Systems. Electroanalysis.12(6): 401-412. 42. Tempel, T. van den, J. K. Gundersen and M. S. Nielsen. 2002. The microdistribution of oxygen in Danablu cheese measured by a microsensor during ripening. International Journal of Food Microbiology. 75:157-161. 43. Wu, W. L. 1980. The list of Taiwan bivalve fauna. Quarterly Journal of the Taiwan Museum, 33(1&2): 55-208。 44. Wu, C. C., T. Yasukawa, H. Shiku, and T. Matsue . 2005. Fabrication of miniature Clark oxygen sensor integrated with microstructure . Sensors and Actuators B. 110: 342–349 45. Yasukawa T., U. Isamu and M. Tomokazu. 1999. Microamperometric Measurements of Photosynthetic Activity in a Single Algal Protoplast. Biophysical Journal. 76: 1129-1135 46. Zhu, S., B. Saucier, J. Durfey, S. Chen and B. Dewey. 1999. Waster excretion characteristics of Manila clams (Tapes philippinarum)under different temperature conditions. Aquacultural Engineering. 20: 231-244..
摘要: 
在文蛤的養殖中,業者往往限於量測工具只能量測水體的溶氧,而底泥是無脊椎動物的棲息地,其環境與無脊椎動物息息相關,底泥與水體的邊界層溶氧扮演著相當重要的角色。因此本研究期能製作一可適用於低溶氧環境的溶氧感測器。
本研究依電化學的原理,製作一Clark式的溶氧微電極。經由電解蝕刻後的白金工作電極,其直徑約10μm,而以玻璃熔接白金絲以保護之,並以Ag/AgCl為參考電極,極化電位為-0.8V,為避免電極受汙染,於尖端塗抹聚二甲基矽氧烷(poly(dimethylsiloxane), PDMS)透氧膜,PDMS具有高透氧性,可使氧氣進入溶於電解液進而於陰極表面進行還原作用產生電流,根據此一電流做一溶氧校正曲線來計算水體中溶氧量,經由量測得微電極靈敏度為12.014 nA/ppm,並顯示出良好的穩定性,未來應可應用於醫學、生物、食品、化學等相關研究。

For the clam aquiculture, farmers were limited by tools to measure the dissolved oxygen in the water. Because the invertebrate lives in the sediment, the sediment-water dissolved oxygen plays an important role for them. The objectives of this research were to fabricate a dissolved oxygen sensor and tested for applicability.
This research was referring the principle of electrochemistry to fabricate a Clark microelectrode. The diameter of the Pt for work electrode was fabricated by electrolysis and etching to 10 μm. Then, the Pt electrode was surrounded with melted glass tube. The Ag/AgCl was applied to be the reference electrode. The polarization potential between the work electrode and the reference electrode was set to be -0.8 V. To avoid the electrode polluted, Pt work electrode was coated with PDMS oxygen membrane at the tip of the glass tube. The oxygen could penetrate PDMS due to the high oxygen permeability, and it dissolved into electrolyte to be reduced on the surface of cathode to generate current. Calibration curve was built on the current to calculate the quantity of dissolved oxygen. The microelectrode was tested and found the sensitivity to be 12.014 nA/ppm which was considered to be a good result as well as the stability. The microelectrode would be applied for medical science, biology, food science and chemistry in the future.
URI: http://hdl.handle.net/11455/35502
其他識別: U0005-2808200705054800
Appears in Collections:生物產業機電工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.