Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3552
標題: 操控高片徑比之奈米矽片以排列出蓮花效應表面
Manipulating the Self-Assembly of Lotus Effect by High-Aspect-Ratio Silicate Platelets
作者: 蔣明立
Chiang, Ming-Li
關鍵字: silicate platelets;超疏水;superhydrophobic;smectite clay;self-assembly;Lotus effect;黏土;自行排列;蓮花效應
出版社: 化學工程學系所
引用: [1] Y. Yi, Y. Wang, H. Liu. Carbohyd. Polym. 2003, 53, 425. [2] G. Lingrong, E. Tara. Chem. Commun. 2005, 7, 874. [3] (a) C. M. Koo, S. O. Kim, I. J. Chung Macromolecules 2003, 36, 2748. (b) P. Maiti, P. H. Nam, M. Okamoto, N. Hasegawa, U. Arimitsu Macromolecules 2002, 35, 2042. (c) M. Zanetti, D. Canavese, A. B. Morgan, F. J. Lamelas, C. A. Wilkie Chem. Mater. 2002, 14, 189. (d) J. C. Matayabas, S. R. Turner In Polymer-Clay Nanocomposites; Pinnavaia, T. J., Beall, G. W., Eds.; John Wiley &Son: New York, 2001; pp 207. [4](a) B. K. G. Theng Formation and properties of clay-polymer complexes; Elsevier: New York, 1979. (b) T. J. Pinnavaia Science 1983, 220, 365-371. [5](a) M. S. Wang, T. J. Pinnavaia Chem. Mater.1994, 6, 468. (b) M. Kato, A. Usuki, A. Okada J. Appl. Polym. Sci. 1997, 66, 1781. (c) A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, O. Kamigaito, J. Mater. Res. 1993, 8, 1179. [6] (a) J. J. Lin, I. J. Cheng, R. Wang, R. J. Lee Macromolecules 2001, 34, 8832. (b) C. C. Chou, F. S. Shieu, J. J. Lin Macromolecules 2003, 36, 2187. (c) J. J. Lin, I. J. Cheng, C. C. Chou Macromol. Rapid Commun. 2003, 24, 492. (d) J.J. Lin, Y. M. Chen Langmuir 2004, 20, 4261. [7] (a) Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, O. Kamigaito J. Polym. Sci., Polym. Chem. 1993, 31, 1755. (b) A. Usuki, N. Hasegawa, H. Kadoura, T. Okamoto Nano Lett. 2001, 1, 271. [8](a) J. Zhu, P. Strart, K. A. Mauritz, C. A. Wilkie J. Polym. Sci., Polym. Chem. 2002, 40, 1498. (b) X. Fu, S. Qutubuddin Polymer 2001, 42, 807. (c) N. Hasegawa, H. Okamoto, M. Kawasumi, A. Usuki J. Appl. Polym. Sci. 1999, 74, 3359. [9] M. Kawasumi, N. Hasegawa, M. Kato, A. Usuki, A. Okada Macromolecules 1997, 30, 6333. [10] H. L. Tyan, Y. C. Liu, K. H. Wei Chem. Mater. 1999, 11, 1942. [11] (a) T. Lan, P. D. Kaviratna, T. J. Pinnavaia J. Phys. Chem. Solids 1996, 57, 1005. (b) C. S. Triantafillidis, P. C. LeBaron, T. J. Pinnavaia Chem. Mater. 2002, 14, 4088. [12] H. Wang, T. Zhao, L. Zhi, Y. Yan, Y. Yu Macromol. Rapid Commun. 2002, 23, 44. [13] C. Zeng, L. J. Lee Macromolecules 2001, 34, 4098. [14] F. L. Beyer, N. C. B. Tan, A. Dasgupta, M. E. Galvin Chem. Mater. 2002, 14, 2983. [15] C. Neinhuis, W. Barthlott, Annals of Botany 1997, 79, 667. [16] W. Barthlott, C. Neinhuis, Planta 1997, 202, 1. [17] P. Wagner, R. Fürstner, W. Barthlott, C. Neinhuis, J. Exp. Bot. 2003, 54, 1295. [18] O. Alexander, H. Stephan, Langmuir 2004, 20, 2405. [19] H. Y. Erbil, A. L. Demirel, Y. Avcı, O. Mert, Science 2003, 299, 1377. [20] Z. Lei, C. C. Fevzi, E. C. Robert, F. R. Michael, Nano Lett. 2004, 4, 1349. [21] N. J. Shirtcliffe, G. McHale, M. I. Newton, C. C. Perry, Langmuir 2003, 19, 5626. [22] T. H. Joong, H. L. Dae, Y. R. Chang, C. Kilwon, J. Am. Chem. Soc. 2004, 126, 4796. [23] L. Mei, Z. Jin, L. Huan, S. Yanlin, J. Lei, Z. Daoben, J. Phys. Chem. B 2003, 107, 9954. [24] N. Akira, H. Kazuhito, W. Toshiya, Langmuir 2000, 16, 7044. [25] F. Reiner, B. Wilhelm, Langmuir 2005, 21, 956. [26] W. Xuedong, Z. Lijun, W. Dan, Langmuir 2005, 21, 2665. [27] S. Xiaoyan, Z. Jin, W. Yilin, J. Lei, J. Phys. Chem. B 2005, 109, 4048. [28] L. Huang, S. P. Lau, H. Y. Yang, E. S. P. Leong, S. F. Yu, J. Phys. Chem. B 2005, 109, 7746. [29] L. Shuhong, L. Huanjun, W. Xianbao, S. Yanlin, L. Yunqi, J. Lei, Z. Daoben, J. Phys. Chem. B 2002, 106, 9274. [30] K. S. L. Kenneth, B. Josė, B. K. T. Kenneth, C. Manish, A. J. A. Gehan, I. M. William, H. M. Gareth, K. G. Karen, Nano Lett. 2003, 3, 1701. [31] Z. Z. Gu, H. Uetsuka, K. Takahashi, R. Nakajima, H. Onishi, A. Fujishima, O. Sato, Angew. Chem. Int. Ed. 2003, 42, 894. [32] J. Y. Shiu, C. W. Kuo, P. Chen, C. Y. Mou, Chem. Mater. 2004, 16, 561. [33] R. Rosario, D. Gust, A. A. Garcia, M. Hayes, J. L. Taraci, T. Clement, J. W. Dailey, S. T. Picraux, J. Phys. Chem. B 2004, 108, 12640. [34] J. Zhang, J. Li, Y. Han, Macromol. Rapid. Commum. 2004, 25, 1105. [35] L. Feng, Y. Song, J. Zhai, B. Liu, J. Xu, L. Jiang, D. Zhu, Angew. Chem. Int. Ed. 2003, 42, 800. [36] A. Usuki, N. Hasegawa, H. Kadoura, T. Okamoto, Nano Lett. 2001, 1, 271. [37] C. C. Chou, J. J. Lin, Macromolecules 2005, 38, 230. [38] H. Wang, T. Zhao, L. Zhi, Y. Yan, Y. Yu, Macromol. Rapid. Commum. 2002, 23, 44. [39] Y. S. Choi, M. H. Choi, K. H. Wang, S. O. Kim, Y. K. Kim, I. J. Chung, Macromolecules 2001, 34, 8978. [40] H. Van Olphen, Clay Colloid Chemistry, 2nd ed., John Wiley & Sons, New York 1997. [41] B. K. G. Theng, The Chemistry of Clay-Organic Reactions, 2nd ed., John Wiley & Sons, New York 1974. [42] J. J. Lin, C. C. Chu, C. C. Chou, Adv. Mater. 2005, 17, 301. [43] (a) M. Alexandre, P. Dubois Mater. Sci. Eng. 2000, 28, 1. (b) M. Zanetti, S. Lomakin, G. Camino Macromol. Mater. Eng. 2000, 279, 1. [44] A. Akelah, A. Moer J. Appl. Polym. Sci.: Appl. Polym. Symp. 1994, 55, 153. [45] (a) P. B. Laszlo in Organic Chemistry Using Clays (Springer-Verlag, 1993). (b) H. V. Olphen in Clay Colloid Chemistry (JOHN WILEY, 1977).
摘要: 
Part A: Exfoliating Smectite Montmorillonite into Random Silicate Platelets
A one-step process for exfoliating the layered aluminosilicate is established by using a polyamine exfoliating agent, which was developed earlier in our research group. The prepared polyamine allows the intercalation of the silicates at 18 Å and 50 Å d spacing, as well as the exfoliation of clay, depending on the multiplicity of HCl salt formed in the polyamines. Random silicate platelets in the water phase can then be obtained by a developed extraction process. After a repetitive toluene extraction, the random silicate platelets in water phase had over 95 wt.-% purity and contamination of organics in less than 5 wt.-%.
Part B: Manipulating the Assemblages by High-Aspect-Ratio Random Silicate Platelets and Fatty Amine Salts to Form a Lotus Effect Surface
Superhydrophobic surface, exhibiting a high water-droplet contact angle of 157o and a rough surface by SEM, has been generated from a self-assembly of high-aspect-ratio silicate platelets associated with detergent-ranged alkyl amine salts. Anionic silicate platelets in an averaged dimension of 80 x 80 x 1 nm3 enable to self-align into a rough plateau surface. The alkyl amine salts tethered to the hard platelet surface provide a flexible hydrophobic surface exhibiting the Lotus effect.
URI: http://hdl.handle.net/11455/3552
其他識別: U0005-0506200614503900
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.