Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3554
標題: 覆晶高鉛銲點之界面反應研究
Interfacial Reactions in Flip-Chip High-Lead Solder Joint
作者: 王凱正
Wang, Kai-Jheng
關鍵字: flip chip;覆晶;high-lead solder;UBM;interfacial reaction;高鉛銲料;凸塊下金屬層;界面反應
出版社: 化學工程學系所
引用: 1.P.A. Totta, ASME, Vol. 1, p. 323 (1997). 2.K.C. Norris and A.H. Landzberg, IBM Journal of Research and Development, Vol. 13(3), p. 266 (1969). 3.K.N. Tu, A.M. Gusak, M. Li, Journal of Applied Physics, Vol. 93(3), p. 1335 (2003). 4.陳信文、陳立軒、林永森、陳志銘,「電子構裝技術與材料」,高立圖書,p. 136 (2004). 5.J.W. Nah, K.W. Paik, J.O. Suh, and K.N. Tu, Journal of Applied Physics, Vol. 94(12), p. 7560 (2003). 6.C.L. Lai, C.H. Lin, and C. Chen, Journal of Materials Research, Vol. 19(2), p. 550 (2004). 7.J.W. Nah, J.H. Kim, H.M. Lee, and K.W. Paik, Acta Materialia, Vol. 52, p.129 (2004). 8.J.W. Jang, C.Y. Liu, P.G. Kim, K.N. Tu, A.K. Mal, and D.R. Frear, Journal of Materials Research, Vol. 15(8), p. 1679 (2000). 9.K.N. Tu and K. Zeng, Materials Science and Engineering R34, p. 1 (2001). 10.K.N. Tu, A.M. Gusak, and M. Li, Journal of Applied Physics, Vol. 93, p. 1335 (2003). 11.Official Journal of the European Union, L37, p.19 (2003). 12.Patrick McCluskey, Proceedings of IPACK’01 The Pacific Rim/ASME International Electronic Packaging Technical Conference and Exhibition, p.1 (2001). 13.S. Wen, L.M. Keer, S. Vaynman, and L.R. Lawson, IEEE Transactions on Componemts and Packaging Technologies, Vol. 25 (1), p.23 (2002). 14.F. Wang, L.M. Keer, S. Vaynman, and S. Wen, IEEE Transactions on Componemts and Packaging Technologies, Vol. 27 (4), p.718 (2004). 15.P.A. Totta and R.P. Sopher, IBM Journal of Research and Development, Vol. 13(3), p. 226 (1969). 16.L.F. Miller, IBM Journal of Research and Development, Vol. 13(3), p.239 (1969). 17.R. Shukla, V. Murali, and A. Bhansali, Electronic Components and Technology Conference, 1999. Proceedings. 49th, p. 945. 18.V.K. Nagesh, R. Peddada, S. Ramalingam, B. Sur, and A. Tai, Electronic Components and Technology Conference, 1999. Proceedings. 49th, p. 975. 19.D.O. Powell, and A.K. Trivedi, Proc. 43rd Electronic Components and Technology Conference, IEEE Components, Packaging and Manufacturing Technology Society, Orlando, Fl, p. 182 (1993). 20.Binary alloy phase diagrams, ed. T.B. Massalski, (Materials Park, OH: ASM Intl., 1990). 21.K. Zeng, R. Stierman, T.C. Chiu, D. Edwards, K. Ano, and K.N. Tu, Journal of Applied Physics, Vol. 97(2), 024508 (2005). 22.Z. Mei, M. Ahmad, M. Hu, and G. Ramakrisha, 2005 Electronic Components and Technology Conf. (Piscataway, NJ:IEEE, 2005), p. 415. 23.Y.H. Liu, C.M. Chuang, and K.L. Lin, Journal of Materials Research, Vol. 19(8), p. 2471 (2004). 24.B.S. Berry and I. Ames, IBM Journal of Research and Development, Vol. 13(3), p. 286 (1969). 25.A.A. Liu, H.K. Kim, and K.N. Tu, Journal of Applied Physics, Vol. 80(5), p. 2774 (1996). 26.C.Y. Liu, H.K. Kim, and K.N. Tu, and P.A. Totta, Applied Physics Letters, Vol. 69(26), p. 4014 (1996). 27.H.K. Kim, K.N. Tu, and P.A. Totta, Applied Physics Letters, Vol. 68(16), p. 2204 (1996). 28.G.Z. Pan, A.A. Liu, H.K. Kim, K.N. Tu, and P.A. Totta, Applied Physics Letters, Vol. 71(20), p. 2946 (1997). 29.J.W. Jang, L.N. Ramanathan, J.K. Lin, and D.R. Frear, Journal of Applied Physics, Vol. 95(12), p. 8286 (2004). 30.L.N. Ramanathan, J.W. Jang, J.K. Lin, and D.R. Frear, Journal of Electronic Materials, Vol. 34(10), L43 (2005). 31.H.K. Kim and K.N. Tu, Physical Review B, Vol. 53(23), p. 53 (1996). 32.K.N. Tu, T.Y. Lee, J.W. Jang, L. Li, D.R. Frear, K. Zeng and J.K. Kivilahti, Journal of Applied Physics, Vol. 89(53), p.4843 (2001). 33.S. Bader, W. Gust, and H. Hieber, Acta Metallurgica Materialia, Vol. 43(1), p. 329 (1995). 34.G. Ghosh, Acta Materialia, Vol. 48, p.3719 (2000). 35.H. Matsuki, H. Ibuka, and H. Saka, Science and Technology of Advanced Materials, Vol. 3, p. 261 (2002). 36.M. He, Z. Chen, and G. Qi, Acta Materialia, Vol. 52, p. 2047 (2004). 37.K.L. Lin, and J.M. Jang, Materials Chemistry and Physics, Vol. 38, p. 33 (1994). 38.M. Inaba, K. Yamakawa, and N. Iwase, IEEE Transactions on Components, Hybrids, and Manufacturing Technology, Vol. 13(1), p. 119 (1990). 39.Johan A. van Beek, Steven A. Stolk and Frans J.J. van Loo, Zeitschrift Fur Metallkunde, Vol. 73, p. 439 (1982). 40.D. Gur, and M. Bamberger, Acta Materialia, Vol. 46(14), p. 4917 (1998). 41.C.S. Huang, J.G. Duh, and Y.M. Chen, Journal of Electronic Materials, Vol. 32(12), p. 1509 (2003). 42.G.Y. Jang, C.S. Huang, L.Y. Hsiao, J.G. Duh, and H. Takahashi, Journal of Electronic Materials, Vol. 33, p. 1118 (2004). 43.G.Y Jang, and J.G. Duh, Journal of Electronic Materials, Vol. 34(1), p. 68 (2005). 44.C.S. Huang, G.Y Jang, and J.G. Duh, Journal of Electronic Materials, Vol. 32(11), p. 1273 (2003). 45.M. Li, F. Zhang, W.T. Chen, K. Zeng, K.N. Tu, H. Balkan, and P. Elenius, Journal of Materials Research, Vol. 17(7), p. 1612 (2002). 46.C.Y. Liu, and S.J. Wang, Journal of Electronic Materials, Vol. 32(1), L1 (2003). 47.P.G. Kim, J.W. Jang, T.Y. Lee, and K.N. Tu, Journal of Applied Physics, Vol. 86(12), p. 6746 (1999). 48.C.W. Hwang, J.G. Lee, K. Suganuma, and H. Mori, Journal of Electronic Materials, Vol. 32 (2), p.52 (2003). 49.H.P.R. Frederikse, R.J. Fields, and A. Feldman, Journal of Applied Physics, Vol. 72, p. 2879 (1992). 50.L. Wang,Q. Wang, A. Xian, and K. Lu, J. Phys.: Condens. Matter 12, p. 777 (2003). 51.C.H. Lin, S.W. Chen, and C.H. Wang, Journal of Electronic Materials, Vol. 31 (9), p.907 (2002). 52.C.H. Wang, and S.W. Chen, Acta Materialia, Vol. 54, p. 247 (2006). 53.C.E. Ho, Y.W. Lin, S.C. Yang, C.R. Kao, and D.S. Jiang, Journal of Electronic Materials, Vol. 35 (5), p.1017 (2006).
摘要: 
電子產品不斷朝著輕薄短小發展,擁有尺寸小與性能優異之覆晶技術逐漸成為封裝市場之主流。在覆晶技術相關之可靠度研究中,銲料凸塊與凸塊下金屬層間所發生之界面反應為其中重要課題之一。本研究主要探討使用於高階產品封裝之高鉛銲料(95wt%Pb-5wt%Sn)與Ti/Cu/Ni凸塊下金屬層之界面反應,其中可分為液/固界面的回焊反應及固/固界面的熱處理反應。
在回焊研究中,將覆晶樣品置於350℃下維持50秒至1440分鐘不等,於回焊5分鐘後,界面處僅生成厚度約0.4 um之介金屬化合物。而於回焊20分鐘後,介金屬化合物持續增厚,並經分析判定為(Ni,Cu)3Sn4與(Ni,Cu)3Sn2二相。在介金屬化合物中可偵測到Cu的存在,表示Cu原子會擴散通過Ni層並溶入介金屬化合物之中。隨著回焊時間增加,發現(Ni,Cu)3Sn4之成長速率遠大於(Ni,Cu)3Sn2,同時觀察到(Ni,Cu)3Sn4的形狀變得較不平整且(Ni,Cu)3Sn2/Ni之間出現許多的孔洞。當回焊經過60分鐘後,發現(Ni,Cu)3Sn2消失且(Ni,Cu)3Sn4整層剝離,而 (Ni,Cu)3Sn4與Ni層之間則填滿Pb。根據微結構分析,提出介金屬化合物成長、消失與剝離的可能機制。
在恆溫熱處理研究中,160℃熱處理下,只觀察到(Ni,Cu)3Sn4生成於銲料與Ni界面間,且180天後(Ni,Cu)3Sn4與Ni層仍接著緊密。當溫度提高至250℃,依然只觀察到(Ni,Cu)3Sn4生成於銲料與Ni界面間,並在45天後發現零碎的介金屬化合物生成於(Ni,Cu)3Sn4與Ni界面間,並隨熱處理時間增加,可觀察到更多零碎的介金屬化合物生成。溫度繼續提升至300℃,可以觀察到(Ni,Cu)3Sn2的生成,且(Ni,Cu)3Sn2並非沿著(Ni,Cu)3Sn4/Ni界面形成一連續的介金屬化合物,而是分散生成於Ni層之中。300℃下熱處理15天後,(Ni,Cu)3Sn4由界面處脫離,而Pb原子穿過脫離的(Ni,Cu)3Sn4,並填充於脫離的(Ni,Cu)3Sn4與(Ni,Cu)3Sn2之間,根據微結構的分析,提出(Ni,Cu)3Sn4脫離與Pb進入之可能機制。

With the electronic products becoming small, thin and light, the flip-chip technology is the trend of the package because of its small package size and excellent performance. The interfacial reaction between solder bump and under bump metallization is one of the important subjects in the flip chip reliability concerns. In this study, the interfacial reaction of high-lead solder (Pb-5wt%Sn) and Ti/Cu/Ni under bump metallization was discussed, which included reflow reaction(liquid/solid interface), and isothermal solid-state aging(solid/solid interface).
In the study of reflow, the flip chip samples were reflowed at 350℃ for durations ranging from 50 s to 1440 min. An intermetallic compound of only 0.4 um thickness was formed at the interface after reflow for 5 min. When the reflow was extended to 20 min, the intermetallic compound grew thicker and the phase identification revealed that the intermetallic compound comprised two phases, (Ni,Cu)3Sn4 and (Ni,Cu)3Sn2. The detection of the Cu content in the intermetallic compounds indicated the Cu atoms had diffused through the Ni layer and took part in the intermetallic compound formation. With increasing reflow time, the (Ni,Cu)3Sn4 phase grew at a faster rate than that of the (Ni,Cu)3Sn2 phase. Meanwhile, irregular growth of the (Ni,Cu)3Sn4 phase was observed and voids formed at the (Ni,Cu)3Sn2/Ni interface. After reflow for 60 min, the (Ni,Cu)3Sn2 phase disappeared and the (Ni,Cu)3Sn4 phase spalled off the Ni layer in the form of a continuous layer. The gap between the (Ni,Cu)3Sn4 layer and the Ni layer was filled with lead. Based on microstructural analyses, a possible mechanism for the growth, disappearance, and spalling of the intermetallic compounds was proposed.
In the study of isothermal solid-state aging, only (Ni,Cu)3Sn4 was formed at the solder/Ni interface aged at 160℃. The (Ni,Cu)3Sn4 attached closely to the Ni layer after 180 days of aging. When the aging temperature was raised to 250℃, there were still only (Ni,Cu)3Sn4 at the solder/Ni interface. But some particles were formed at the (Ni,Cu)3Sn4/Ni interface for 45 days. With the aging duration increased, there were more and more particles formed at the interface. The (Ni,Cu)3Sn2 was formed when the aging temperature was raised to 300℃. The (Ni,Cu)3Sn2 didn't form as a continuous layer along the (Ni,Cu)3Sn4/Ni interface but grew discontinuously in the Ni layer. After aging at 300℃ for 15 days, the (Ni,Cu)3Sn4 detached from the interface. Pb was found to penetrate the detached (Ni,Cu)3Sn4 and filled the gap between the detached (Ni,Cu)3Sn4 and the (Ni,Cu)3Sn2. Based on microstructural analyses, a possible mechanism for the detachment of the (Ni,Cu)3Sn4 and the Pb penetration was proposed.
URI: http://hdl.handle.net/11455/3554
其他識別: U0005-0607200610350700
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.