Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35572
標題: 單側腰椎骨融合固定術之研究
Unilateral Cage-Instrumented Fixation for Lumbar Spine
作者: 張迪生
Chang, Ti-sheng
關鍵字: Bone fusion;骨融合;range of motion;degeneration;decompression;fixation;活動度;退化;減壓;固定
出版社: 生物產業機電工程學系所
引用: 1. B. K. Crpress,” Characteristics of physician visits for back symptoms: A National Prospective”, Am. J .Public. Health., vol 73, pp 389-395, 1983. 2. P. G. Shekelle, M. Markovich, and R. Louie,” An epidemiologic study of episodes of back pain care”, Spine., vol 20, pp 1668-1673, 1995. 3. J. W. Frymoya,” Back pain and sciatica”, N .Engl. J. Med., vol 3, pp 293-300, 1988. 4. A. C. Popageogion, G. F. Macfarlane, and E .Thomas,” Psychosocial factors in the workplace- do they predicting new episodes of low back pain?”, Spine., vol 22, pp 1137-1142, 1997. 5. D. Shier, J. L. Butler, R. Lewis, Hole's Human Anatomy and Physiology, 10th ed, McGraw-Hill, 2004. 6. J. L. Berry, J. M, Moran, W. S. Berg, and A. D. Steffee,”A morphometric study of human lumbar and selected thoracic vertebra”, Spine., vol 12, pp 362-366, 1987. 7. M. M. Panjabi, J. Duranceau, V. K. Goel, T. R. Oxland, and K. Takata, “Cervical human vertebra: Quantitative three-dimensional anatomy of the middle and lower regions”, Spine., vol 16, pp 861-869, 1991. 8. M. M. Panjabi, K. Takata, V. K. Goel, D, Federico, T. R. Oxland, J. Duranceau, and M. Krag, “Thoracic human vertebra: Quantitative three-dimensional anatomy”, Spine., vol 16, pp 888-901, 1991. 9. A. A. White and M. M. Panjabi, Clinical Biomechanics of the spine, 2nd ed. Philadelphia; Lippincott, pp 1-125, 1990. 10. J. P. J. Van Schaik, H. Verbiest, and F. D. J. Van Schaik, “The orientation of lamina and facet joints in the lower lumbar spine”, Spine., vol 10, pp 59-63, 1985. 11. A. M. Ahmed, N. A. Duncan, and D. L. Burk, “The effect of facet geometry on the axial torque-rotation response of lumbar motion segments”, Trans Orthop Res Soc, Atlanta, pp 1-10, 1988. 12. J. R. Taylor and L. T. Twomey, “Age changes in lumbar zygapophyseal joints. Observations on structure and function”, Spine., vol 11, pp 739-745, 1986. 13. M. H. Krag, D. L. Weaver and B. D. Beynnon, “Morphometry of the thoracic and lumbar spine related to transpedicular screw placement for surgical fixation”, Spine., vol 13, pp 27-32, 1988. 14. M. R. Zindrick, L. L. Wiltse, A. Doornik, E. H. Widell, G. W. Knight, A. G. Patwardhan, J. C. Thomas, S. L. Rothman, and B. T. Fields,“Analysis of the morphometric characteristics of the thoracic and lumbar pedicles”, Spine., vol 12, pp 160-166, 1987. 15. J. H. Susan, “Basic Biomechanics”, 5th ed, McGraw-Hill, 2006. 16. H. Farfan, Mechanical disorders of the lower back, 1st ed, Philadelphia, 1973. 17. J. Chazal, A. Tanguy, M. Bourges, G. Gureal, G. Escande, M. Guillot, and G. Vanneuville, “Biomechanical properties of spinal ligaments and a histological study of the supraspinal ligament in traction”, J. Biomech., vol 18, pp 167-176, 1985. 18. G. A. Dums, L. Beaudoin, and G. Drouin, “In situ mechanical behavior of posterior spinal ligaments in the lumbar region”, J. Biomech., vol 20, pp 301-310, 1987. 19. A . G. Patwardhan, R. Harvey, K. Meade, B. Lee, and B. Dunlap, “A follower load increases the load-carrying capacity of the lumbar spine in compression”, Spine., vol 4, pp 1003-1009, 1999. 20. T. Brown, D. Pederson, M. Gray, R. Brand, and C. Rubin, “Toward an identification of mechanical parameters initiating periosteal remodeling: a combined experimental and analytic approach”, J Biomech ., vol 23, pp 893-905, 1990. 21. P. R. Weinstein, G. Ehni, and C. B. Wilson, “Lumbar spondylosis: Diagnosis, Management and Surgical Treatment”, Chicago and London: Year Book, pp 13-87, 1977. 22. D. J. Maiman, S. Kumaresan, N. Yoganandan, and F. A. Pintar, “Biomechanical effect of anterior cervical spine fusion on adjacent segments”, Biomed Master Eng ., vol 9, pp 27-38, 1999. 23. A. M. Kaigle, S. H. Holm, and T. H. Hansson,” Experimental instability in the lumbar spine”, Spine., vol 4, pp 421-430, 1995. 24. M. A. Adams, “Mechanical testing of the spine—an appraisal of methodology, results and conclusions”, Spine., vol 20, pp 2151-2156, 1995. 25. M. M. Panjabi, “Biomechanical evaluation of spine fixation devices: 1 conceptual framework”, Spine., vol 13, pp1129-1134, 1988. 26. M. M. Panjabi, “The stabilizing system of the spine. Part I. Function, dysfunction, adaptation, and enhancement”, J. Spinal Dis., vol 5, pp 383-389, 1992. 27. M. M. Panjabi, “The stabilizing system of the spine. Part II. Neutral zone and instability hypothesis”, J. Spinal Disord., vol 5, pp 390-397, 1992. 28. M. Mimura, M. M. Panjabi, T.R. Oxland, T. J. Criso, I. Yamamoto and A. Vasavada, “Disc degeneration affects the multidirectional flexibility of the lumbar spine”, Spine., vol 19, pp 1371-1380, 1994. 29. T. R. Oxland, and M. M. Panjabi, “The onset and progression of spinal injury: a determination of neutral zone sensitivity”, J. Biomech., vol 25, pp 1165-1172, 1992. 30. R. P. Ching, A. F. Tencer, P. A. Anderson, and C. H. Daly, “Comparison of residual stability in thoracolumbar spine fractures using neutral zone measures”, J Orthop Res., vol 13, pp 533-541, 1995. 31. M. M. Panjabi, M. Kifune, W. Liu, M. Arand, A. Vasavada, and T. R. Oxland, “Graded thoracolumbar spine injuries: development of multidirectional instability”, Eur Spine J., vol 7, pp 332-339, 1998. 32. M. M. Panjabi, K. Abumi, J. Duranceom, and T. R. Oxland, “Spinal stability and intersegmental muscle forces: A biomechanical model”, Spine., vol 14, pp 194-200, 1989. 33. H. J. Wilke, S. Wolf, L. E. Claes, M . Arand, and A. Wiesuel, “Stability increase of the lumbar spine with different muscle groups. A biomechanical in vitro study”, Spine., vol 20, pp 192-198, 1995. 34. D. S. Broke, J. C. Dick, D. N. Kun, R. McCabe, and T. A. Zdeblick, “Posterior lumbar interbody fusion. A biomechanical comparison, including a new threaded cage”, Spine., vol 22, pp 26-31, 1997. 35. M. M. Panjabi, “Biomechanical evaluation of spine fixation device: I, A conceptual framework”, Spine., vol 13, pp 1129-1134, 1988. 36. A. F. Tencer, D. Hampton, and S. Eddy, “Biomechanical properties of threaded inserts for human interbody spinal fusion”, Spine., vol 20, pp 2408-2414, 1995. 37. H. J. Wilke, S. T. Krischak, K. H. Wenger, and L. E. Claes, “Load-displacement properties of the thoracolumbar calf spine: experiment results and comparison to know human data”, Eur Spine J., vol 6, pp 130-137, 1997. 38. T. R. Oxland, M. M. Panjabi, and E. P. Southern, “An anatomic basis for spinal instability: a porcine trauma model”. J Orthop Res., vol 9, pp 462-468, 1991. 39. J. W. Brantigan, P. C. McAfee, B. W. Cunninggham, H. Wang, and C. M. Orbegosp, “Interbody lumbar fusion using a carbon fiber cage implant versus allograft bone. An investigational study in the Spanish goat”, Spine., vol 19, pp 1436-1444, 1994. 40. F. A. Pintar, D. J. Maiman, J. P. Hollowell, N. Yoganandan, Droesekw, J. M. Reinartz, and B. Cuddy, “Fusion rate and biomechanical stiffness of hydroxyapatite versus autogenous bone grafts for anterior discectomy. An in vivo animal study”, Spine., vol 19, pp 2524-2528, 1994. 41. H. J. Wilke, A. Kettler, K. H. Wenger, and L. E. Claes, “Anatomy of the sheep spine and its comparison to the human spine”, Anat Rec., vol 247, pp 542-555, 1997. 42. P. Eysel, “Biomechanical principles of ventral and dorsal instrumentation correction in scoliosis” Biomachanische Korrektuprinzipien Bei Skoliosen Orthopade., vol 29, pp 507-517, 2000. 43. J. G. Heller, T. Zdeblick, D. A. Kunz, R. McCabe, and M. E.Cooke, “Spinal instrumentation for metastatic disease: in vitro biomechanical analysis”, J Spinal Disord., vol 6, pp 17-22, 1993. 44. H. S. An, T. H. Lim, J. W. You, J. M. Hong, and L. EcR J McGrady, “Biomechanical evaluation of anterior thoracolumbar spinal instrumentation”, Spine., vol 20, pp 1979-1983, 1995. 45. T. R. Oxland, and T. Lund, “Biomechanics of the stand-alone cages and cages in combination with posterior fixation: a literature”, Eur Spine J., vol 9, pp 95-101, 2000. 46. T. A. Zdeblick, K. E. Warden, D. Zou, P. C. McAfee, and T. J. Abithol, “Anterior spinal fixators. A biomechanical in vitro study”, Spine., vol 18, pp 513-517, 1993. 47. H. J. Wilke, A. Kettler, and L. E. Claes, “Are sheep spines a valid biomechanical model for human spines ?”, Spine., vol 22, pp 2365-2374, 1997. 48. T. Smit, “The use of a quadruped as an in vivo model sot the study of the spine-ciomechnaical considerations”, Eur Spine J.,vol 11, pp 134-144, 2002. 49. J. Reid, J. Meakins, S. Robins, J. Skakle, and D. Hakins, “Sheep deer and cow intervertebral discs as models for investigating disc replacement”, Acta Bioeng Biomech., vol 4, pp 69-70, 2002. 50. S. Vadapalli, M. Robon, A. Biyani, K. Sairyo, A. Khandha, and V. K. Goel, “Effect of lumbar interbody cage geometry on construct stability: A cadaveric study”, Spine., vol 31, pp 2189-2194, 2006. 51. H. H. Chen, B. S. Cheung, W. K. Wang, A. Li, and K. C. Li, “Biomechanical analysis of unilateral fixation with interbody cages”, Spine., vol 30, pp E92-96, 2005. 52. M. R. Krijnen, D. Mensch, J. H. V. Dieen, P. I. Wuisman, and T. H. Smit, “Primary spinal segment stability with a stand-alone cage- in vitro evaluation of a successful goat model”, Acta Orthopaedica., vol 77, pp 454-461, 2006. 53. R. B. Cloward, “The treatment of ruptured lumbar intervertebral disc by vertebral fusion, I indications, operative technique, after care”, J Neurosurg., vol 10, pp 154-168, 1953. 54. R. B. Cloward, “Vertebral body fusion for rupture lumbar disc; a roentgenographic study”, Am J Surg., vol 90, pp 969-976. 55. C. Leufven, and A. Nordwall, “Management of chronic disabling low back pain with 360 degrees fusion. Results from pain provocation test and concurrent posterior lumbar interbody fusion, posterolateral fusion, and pedicle screw instrumentation in patients with chronic disabling low back pain”, Spine., vol 19, pp 2042-2045, 1999. 56. J. C. France, M. J. Yaszemski, W. C. Lauerman, J. E. Cain, J. M. Glover, K. J. Lawson, J. D. Coe, S. M. Topper, and R. D. Fraser, “A randomized prospective study of posterlateral lumbar fusion”, Outcomes with and without pedicle screw instrumentation”, Spine., vol 24, pp 553-560, 1999. 57. J. D. Rompe, P. Eysel, and C. Hopf, “Clinical efficacy of pedicle instrumentation and posterolateral fusion in the symptomatic degenerative lumbar spine”, Eur Spine J .,vol 4, pp 231-237, 1995. 58. A. D. Steffee, and D. J. Sitkowski, “Posterior lumbar interbody fusion and plates”, Clin Orthop., vol 227, pp 99-102, 1988. 59. T. Stonecipher, and S. Wright, “Posterior lumbar interbody fusion with facet-screw fixation”, Spine., vol 14, pp 468-471, 1989. 60. J. O'Dowd, J. K.Webb, “The Nottingham BAK cage experience: 2 year results”. Presented at the 1998 North American Spine Society annual Meeting, San Francisco, CA, October 6, 1998. 61. A. J. Ghanayem, A. J. Rapiff, and T. A.Zdeblick, “Biomechanical analysis of intervertebral fusion cages with respect to point of insertion and posterior element deficiencies”, Presented at International Society for the Study of the lumbar Spine. Burlington, VT, June, pp 25-29, 1996. 62. V. Vamvanij, B. E. Fredrickson, J. M. Thorpe, M. E. Stadnick, and H. A.Yuan, “Surgical treatment of internal disc disruption : an outcome study of four fusion techniques”, J Spinal disord., vol 11, pp 375-382, 1998. 63. M. Bernhardt, D. E. Swartz, P. L. Clothiaux, R. R. Crowell, and A. A. White 3rd, “Posterolateral lumbar and lumbosacral fusion with and without pedicle screw internal fixation”, Clin Ortho., vol 284, pp 109-115, 1992. 64. K-Y. Ha, M. J. Schendel, J. L. Lewis, and J. W. Oqilvies, “Effect of immobilization and configuration on lumbar adjacent-segment biomechanics”, J Spinal Disord., vol 6, pp 99-105,1993. 65. C. K. Lee, and N. A. Lanfrana, “Lumbosacral spine fusion: a biomechanical study”, Spine., vol 9, pp 574-581, 1984. 66. H. Nagata, M. J. Schendel, E. E. Transfeldt, and J. L.Lewis, “The effects of immobilization of long segments of the spine on the adjacent and distal facet force and lumbosacral motion”, Spine., vol 18, pp 2471-2479, 1993. 67. Y. Shono, K. Kaneda, K. Abumi, P. C. McAfee, and B. W. Cunningham, “Stability of posterior spinal instrumentation and its effects on adjacent motion segments in the lumbosacral spine”, Spine., vol 23, pp 1550-1558, 1998. 68. C. K. Lee, “Accelerated degeneration of the segment adjacent to a lumbar fusion”, Spine., vol 13, pp 375-377, 1988. 69. J. D. Schlegel, J. A. Smith, and R. L. Schleusener, “Lumbar motion segment pathology adjacent to thoracolumbar, lumbar, and lumbosacral fusion”, Spine., vol 21, pp 970-981, 1996. 70. A. Tsantrizos, H. G. Baramki, S. Zeidman, and T. Steffen, “Segmental stability and compressive strength of posterior lumbar interbody fusion implants”, Spine., vol 25, pp 1899-1907, 2000. 71. A. M. Ahmed, W. A. Duncan, and D. L. Burke, “The effect of facet geometry on the axial torque-rotation response of lumbar motion segments”, Spine., vol 15, pp 391-401, 1990. 72. J. A. McCulloch, “Microdecompression and uninstrumented single-level fusion for spinal canal stenosis with degenerative spondylolisthesis”, Spine., vol 23, pp 2243-2252, 1998. 73. W. J. Elias, N. K. Simmons, G. J. Kaptain, J. B. Chadduck, J. B. Whitehill, and R. Whitehill, “Complications of posterior lumbar interbody fusion when using a titanium threaded cage”, J Neurosurg., vol 93, pp 338-340, 2000. 74. K. Okuyama, T. Suzuki, Y. Tamma, M. Chiha, and K. Sato, “Posterior interbody fusion: a retrospective study of complications after facet joint excision and pedicale screw fixation in 148 cases”, Acta Ortho Scand., vol 70, pp 329-334, 1999. 75. R. W. Molinari, J. Sloboda, and F. L. Johnstone, “Are 2 cages needed with instrumented PLIF ? A compsrison of 1 versus 2 interbody cages in a military population”, Am J Orthop., vol 32, pp 337-343, 2003. 76. B. C. Cheng, J. Gorden, J. Cheng, and W. C. Welch, “Immediate biomechanical effects of lumbar posterior dynamic stabilization above a circumferential fusion”, Spine., vol 32, pp 2551-2557, 2007. 77. R. S. Ochia, N. Inoue, R. Takatori, G. B. Anderson, and H. S. An, “In vivo measurement of lumbar segmental motion during axial rotation in asymptomatic and chronic low back pain male subjects”, Spine., vol 32, pp 1394-1399, 2007. 78. R. C. Mulholland, and D. K. Sengupta, “Rationale, principles and experimental evaluation of the concept of soft stabilization”, Eur Spine J., vol 11, pp S198-S205, 2002. 79. A. Nachemson, “Toward a better understanding of low-back pain: a review of the mechanics of the lumbar disc”, Rheumatol Rehabil., vol 14, pp 129-143, 1975. 80. A. Schultz, G. Anderson, R. Ortengren, K. Haderspeck, and A. Nachemson, “Loads on the lumbar spine. Validation of a biomechanical analysis by measurements of intradiscal pressures and myoelectric signals”, J Bone Joint Surg Am., vol 64, pp 713-720, 1982. 81. T. M. Stoll, G. Dubois, and O.Schwarzenbach, “The dymanic neurtralization system for the spine: a multi-center study of a novel non-fusion system”, Eur Spine J., vol 11, pp S170-S178, 2002. 82. T. Harms, and H. Rolinger, “A one-stage procedure in operative treatment of spondylolietheses: dorsal traction-reposition and anterior fusion”, Z Orthop Ihre Grenzgeb., vol 120, pp 343-347, 1982 (Germ). 83. T. Harms, and D. Jeszensky, “The unilateral transforaminal approach for posterior lumbar interbody fusion”, Orthop Traumatol., vol 6, pp 88-99, 1998. 84. T.G. Lowe, A.D. Tahernia, M.F. O'Brien and D.A. Smith, “Unilateral transforaminal posterior lumbar interbody fusion (TLIF): indicattons, technique, and 2-year results”, J Spinal Disord Tech., vol 15, pp 31-38, 2002. 85. S.A. Salehi, R. Tawk, A. Ganju et al, “Transforaminal lumbar interbody fusion: surgical technique and results in 24 patients”, Neurosurgery., vol 54, pp 368-374, 2004. 86. M. B. Kabins, J. N. Weinstein, K. F. Spratt, E. M. Found, V. K. Goel, J. Woody, and H. A. Sayre, “Isolated L4-5 fusions using the variable screw placement system: unilateral versus bilateral”, J Spinal Disord., vol 5, pp 39-49, 1992. 87. K. S. Suke, H. M. Lee, N. H. Kim, and J. W. Ha, “Unilateral versus bilateral pedicle screw fixation in lumbar spinal fusion”, Spine., vol 25, pp 1843-1847, 2000. 88. K. Abumi, M. M. Panjabi, K. M. Krama, J. Duranceau, T. R. Oxland, and J. J. Crisco, “Biomechanical evaluation of lumbar spinal stability after graded facetectomies”, Spine., vol 15, pp 1142-1147, 1990. 89. S. T. Wang, V. K. Goel, C. Y. Fu, S. Kubo, W. Choi, C. L. Liu, and T. H. Chen, “Posterior instrumentation reduces differences in spine stability as a result of different cage orientations: an in vitro study”, Spine., vol 30, pp 62-67, 2005. 90. T. K. Niemeyer, M. Koriller, L. Claes, A. Kettler, K. Werner, and H. J. Wilke, “In vitro study of biomechanical behavior of anterior and transforaminal lumbar interbody instrumented technique”, Neurosurgery., vol 59, pp 1271-1277, 2006. 91. A. V. Slucky, D. S. Brodke, and K. N. Bachus, “Less invasive posterior fixation method following transforaminal lumbar interbody fusion: a biomechanical analysis”, The Spine Journal., vol 6, pp 78-85, 2006. 92. P. Schleicher, P. Beth, A. Ottenbacher, R. Pflugmacher, M. Scholz, K. J. Schnake, N. P. Haas, and F. Kandziora, “Biomechanical evaluation of different asymmetrical posterior stabilization methods for minimally invasive transforaminal lumbar interbody fusion”, J Neurosurg Spine., vol 9, pp 363-371, 2008. 93. V. K. Goel, T-H. Lim, J. Gwon, J. Y. Chen, J. M. Winterbottom, J. B. Park, J. N. Weinstein, and J. Y. Ahn, “Effects of rigidity of an internal fixation device. A comprehensive biomechanical investigation”, Spine., vol 16, pp S155-161, 1991. 94. T. S. Chang, C. W. Cheng, C. S. Wang, H. Y. Chen, and J. H. Chang, “A new multi-directional tester for the evaluation of spinal biomechanics” J of Medical and Biological Engineering., vol 29, pp 7-13, 2009. 95. R.R. Craig, “Mechanics of Materials”, First ed, Toronto: John Wiley & Sons Inc, pp 175-179, 1996. 96. D. J. Goertzen, C. Lane and T. R. Oxland, “Neutral zone and range of motion in the spine are greater with stepwise loading than with a continuous loading protocol. An in vitro porcine investigation” J. Biomech., vol 37, pp 257-261, 2004. 97. R. E. Thompson, T. M. Barker and M. J. Pearcy, “Defining the Neutral Zone of sheep intervertebral joints during dynamic motions: an in vitro study” Clin. Biomech., vol 18, pp89-98, 2003. 98. H. J. Wilke, L. Claes, H. Schmitt and S. Wolf, “A universal spine tester for in vitro experiments with muscle force stimulation” Eur. Spine J., vol 3, pp91-97, 1994. 99. J. T. Lysack, J. P. Dickey, G. A. Dumas and D. Yen, “A continuous pure moment loading apparatus for biomechanical testing of multi-segment spine specimens” J. Biomech., vol 33, pp 765-770, 2000. 100. H. J. Wilke, A. Rohlmann, S. Neller, M. Schultheiss, G. Bergmann, F. Graichen and L. E. Claes, “Is it possible to simulate physiologic loading conditions by applying pure moments? A comparison of in vivo and in vitro load components in an internal fixator” Spine., vol 26, pp 636-642, 2001. 101. A.Shirazi-Adl , “Nonlinear stress analysis of the whole lumbar spine in torsion-mechanics of facet articulation”, J. Biomech., vol 27, pp 289-299,1994. 102. T.R. Oxland, and J.J. III. Crisco and M.M.Panjabi,” The effect of injury on rotational coupling at the lumbosacral joint. A biomechanical investigation” Spine., vol 17, pp 74-84, 1992. 103. M. H. Pope and J. W. Frymoyer, “The biomechanics of lumbar disc herniation and the effect of overload and instability” J. Spinal Disord., vol 1: pp 16-32, 1988. 104. H. F. Farfan, J. W. Cossette, G. H. Robertson, R. V. Wells and H. Kraus, “The effects of torsion on the lumbar intervertebral joints: the role of torsion in the production of disc degeneration” J. Bone Joint Surg.-Am.,Vol., 52: pp 468-497, 1970. 105. J. F. Cusick, N. Yoganandan, F. Pintar, and J. M. Reinartz, “Biomechanics of sequential posterior lumbar surgical alterations” J. Neurosurg., vol 76, pp 805-811, 1992. 106. N. R. Crawford, J. D. Peles and C. A. Dickman, “The spinal lax zone and neutral zone: measurement techniques and parameter comparisons,” J. Spinal Disord., 11: 416-429, 1998. 107. N. Yoganandan, J. B. Myklebust, J. F. Cusick, C. R. Wilson and A. Sances, Jr., “Functional biomechanics of the thoracolumbar vertebral cortex,” Clin. Biomech., 3: 11-16, 1988. 108. P. M. Lin, “Radiologic evidence of posterior lumbar interbody fusion”,In: P. M. Lin, ed, Interbody Fusion: Principles and Techniques in Spine Surgery. Rockville, MD: Aspen Publisher, 1989.
摘要: 
本篇主旨乃探討對於腰椎退化性病變,以單側後位腰椎間骨融合手術與雙側後位腰椎間骨融合手術的生物力學特性比較與分析。
取十二隻羊屍之腰椎單一運動節段為樣本進行非破壞性橈度檢測,運動方向包含前曲、後仰、軸向旋轉及側彎曲,手術方式包括椎板切除、內側小面關節切除、椎間盤切除、椎間支架置入以及椎弓根釘置入,各個樣本在原始狀態下經不同運動方向檢測後,以此手術順序依次為之。十二隻樣本平均分為兩組,每組六隻。第一組接受單側腰椎間骨融合手術,第二組接受雙側腰椎間骨融合手術,兩組在各個手術後接受相同的純力距以及運動方向的檢測,接著進行兩組活動度以及中性區的分析比較。
在此羊腰椎模型下,兩組無論從活動度或中性區比較皆顯示有相似的穩定度,而在單側手術這一組,在接受破壞性手術(如椎板切除、內側小面關節切除以及椎間盤切除)和穩定性手術(椎間支架置入以及椎弓根釘置入)以後,無論側向彎曲或軸向旋轉,左右兩側皆無顯著差異:單側後位腰椎骨融合手術可減少手術暴露部位,伴隨椎弓根釘的使用,可增進椎體前柱的穩定效應,兩側不平均引致腰椎不愉悅的成對活動也沒有發生,同時單側手術方式的金額也較便宜,因此,單側後位腰椎骨融合手術,在臨床上,特別是一些以單側症狀表現的退化性腰椎病變患者,乃可提供替代傳統雙側後位腰椎骨融合手術的方式。

To investigate how unilateral cage-instrumented posterior lumbar interbody fusion (PLIF) affects degenerative disc disease by comparing the biomechanical characteristics of unilateral and bilateral cage-instrumented PLIF.
Twelve motion segments in sheep lumbar spine specimens were tested for flexion, extension, axial rotation, and lateral bending by nondestructive flexibility test method using a nonconstrained testing apparatus. The specimens were divided into two equal groups. Group 1 received unilateral procedures while group 2 received bilateral procedures. Laminectomy, facetectomy, discectomy, cage insertion and transpedicle screw insertion were performed sequentially after testing the intact status. Changes in range of motion (ROM) and neutral zone (NZ) were compared between unilateral and bilateral cage-instrumented PLIF.
Comparing ROM and NZ between, unilateral cage-instrumented PLIF and bilateral cage-instrumented PLIF revealed similar stability in the sheep spine model. In the unilateral cage-instrumented PLIF group, the destructive and stabilizing procedures did not demonstrate a significant difference between right and left side in the lateral bending and axial rotation direction.
Based on the results of this study, unilateral cage-instrumented PLIF and bilateral cage-instrumented PLIF have similar stability in the sheep spine model. The unilateral approach can substantially reduce exposure requirements. It also offers the biomechanics advantage of construction using anterior column support combined with pedicle screws. The unpleasant effect of couple motion resulting from inherent asymmetry was absent in the unilateral group.
URI: http://hdl.handle.net/11455/35572
其他識別: U0005-1611200921314300
Appears in Collections:生物產業機電工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.