Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35584
標題: 噴霧冷卻控制策略於聖誕紅葉面降溫之研究
The Study of Fog Cooling System with Different Control Models on Poinsettia''s Leaf Cooling Effects
作者: 羅喬中
Lo, Chiao-Chung
關鍵字: Fog Cooling System;噴霧冷卻;Control Models;控制策略;聖誕紅葉面降溫
出版社: 生物產業機電工程學系所
引用: 1. 朱建鏞。1998。聖誕紅育種技術。聖誕紅生長技術與消費。桃園區改農業改良場特刊12:5-11。 2. 李志仁。1993。聖誕紅盆花以溫度和水分控制高度之研究。國立中興大學園藝系研究所碩士論文。 3. 林正亮、朱建松、黃裕益。1997。噴霧降溫系統於開放式雞舍內的蒸發比例之研究。嘉義技術學院學報55:11-26。 4. 周檳源。2003。紅外線溫度計用於火鶴葉量測之研究。國立中興大學生物產業機電工程系研究所碩士論文。 5. 周沅曉。1997。噴霧冷卻法應用於溫室降溫之研究。國立中興大學農業機械工程學研究所碩士論文。 6. 洪國欽。2005。紅外線雞體溫度感測系統之研究。國立中興大學生物產業機電工程系研究所碩士論文。 7. 盛中德、黃明仕。1994。農藥施用飄積現象之研究I-液壓噴嘴噴霧粒徑分佈與風速之研究。農業機械期刊3(1):57-66。 8. 黃裕益。2000。鼓風式噴霧法於開放型溫室降溫之研究。農業機械期刊9(4):17-30。 9. 黃郁升。2004。溫室火鶴花蒸發散之研究。國立中興大學生物產業機電工程系研究所碩士論文。 10. 黃茂坤。1996。工業用超音波檢測實務彙編。中船公司高雄總場訓練中心。1-39。 11. 陳韋誠。2006。利用超音波清洗番木瓜之研究。國立中興大學生物產業機電工程系研究所碩士論文。 12. 陳加忠。1999。溫室內盆栽花卉蒸散量之研究。中華農業氣象6(4)。 13. 陳加忠、沈德欽。1997。紅外線溫度計在葉溫量測上之應用。中華農葉氣象4(3):119-131。 14. 張義忠。1997。畜禽舍細霧降溫系統之動態模擬。國立台灣大學農業機械工程學研究所碩士論文。 15. 張金元。2005。噴霧程序變異控制降溫系統應用於開放式溫室內熱環境改善之研究。國立中興大學生物產業機電工程系研究所碩士論文。 16. 雷鵬魁。1997。開放式蛋雞舍內環境品質之量測與分析及改善對策之研究。農業機械期刊6(3):43-61。 17. 楊黎玲。1998。聖誕紅實生育種之研究。國立中興大學園藝學系研究所碩士論文。 18. 盧子淵。1996。設施內作物蒸散模式之基礎研究。國立中興大學生物產業機電工程系研究所碩士論文。 19. 賴耿陽。1995。紅外線工學基礎應用。紅外線技術研究會。 20. 蕭子齊。1997。紅外線溫度計在聖誕紅葉溫上之量測。國立中興大學生物產業機電工程系研究所碩士論文。 21. Abdel-Ghany, A.M. and T. Kozai. 2006. Cooling Efficiency of Fogging Systems for Greenhouses. Biosystems Engineering, 94(1):97-109. 22. Arbel, A., M. Barak and A. Shklyar. 2003. Combination of forced ventilation and Fogging systems for cooling greenhouses. Biosystems Engineering, 84(1):45-55. 23. Bottcher, R.W., I.B. Singletary and G.R. Baughman. 1993. Humidity effects on efficiency of misting nozzles. In “Livestock Enviroment IV” , ed. E. Collins and C. Boon, P.375-383. Fourth International Symposium on Livestock Environment. St. Joseph, MI, USA:ASAE. 24. Fuchs, M. and C.B. Tanner. 1966. Infrared Thermometry of vegetation. Agron. J. 58:597-601. 25. Hatfield, J. L. 1990. Measure plants stress with an infrared thermometer. HortSci. 25:1535-1538. 26. Kiniry, J. R., C.E. Simpson, A.M. Schubert and J.D. Reed. 2004. Peanut leaf area index, light interception, radiation use efficiency, and harvest index at three sites in Texas. Field Crops Research. 91:297-306. 27. Kristoffersen, T. 1994. Early Norwegian studies of growth and development in poinsettia. basis of poinsettia production. The Agricultural university of Norway. 15-21. 28. Malvern Instruments Ltd. 1991. System 2600 Instriction Manual. 29. NEC San-ei Instruments. 2004. Thermo Tracer TH9100 MV/WV Operation Manual. 30. Nielsen, D.C. and R.L. Anderson. 1989. Infrared thermometry to measure single leaf temperatures for quantification of water stress in Sonflower. Agron. J. 81:840-842. 31. Ricardo, J. Haro., L. Dardanelli., E. Otegui. and J. Collino. 2008. Seed yield determination of peanut crops under water deficit:Soil strength effects on pod set, the source-sink ratio and radiation use efficiency. Field Crops Research. 109:24-33. 32. Tayama, H.K. and T.J. Roll. 1988. Tips on growing poinsettias. Ohio. Coop. Ext. ser. Bul. 108pp.
摘要: 
本研究利用超音波振盪造霧器作為噴霧冷卻系統,以間歇性之造霧方式進行噴霧冷卻,探討以不同控制策略(時間、溫度、濕度)進行噴霧冷卻時所形成之環境溫濕度變化,對聖誕紅葉面降溫之影響,並利用紅外線熱影像儀分析葉面溫度分佈之情形。
研究結果顯示,以超音波振盪造霧器作為噴霧冷卻系統,確實可達到良好之降溫效能,並且經由計算得知其蒸發效率約為95%左右。以時間作為控制策略操作噴霧冷卻時,於一次循環完畢後,其環境之乾球溫度比前一次啟動時低,能使環境乾球溫度低7℃,聖誕紅葉溫低6.6℃,同時以熱像儀分析葉面降溫情形,結果以葉緣兩側之部份降溫程度較為一致且效果較好。以乾球溫度及相對濕度作為控制策略操作噴霧冷卻,當噴霧停止條件越接近濕球溫度時,環境乾球溫度及聖誕紅葉溫所能降下之幅度越大。而葉面於降溫及回溫過程,皆產生延遲之現象,其延遲時間約為15秒。若增加設施內之蒸發量,對延遲降溫之現象有所改善;當噴霧時間相同,如縮短其間歇時間,可使回溫時之葉溫峰值降低。

This study using Ultrasonic Piezoelectric Transducer to be the fog cooling system and spraying intermittently for cooling, discusses the Poinsettia''s leaf cooling effect of various control models (Time-delays, Dead zone and humidity control) on temperature and humidity fluctuations, and utilizes infrared themal type detector to measure the temperature distribution of the Poinsettia''s leaf while cooled.
The results indicated that the ultrasonic Piezoelectric Transducer have good efficiency of cooling and evaporative efficiency is about 95%. For the time-delays control model, after circulation is finished, the dry ball temperature was lower than last time of fogging, and this can make dry ball temperature have 7℃ and Poinsettia''s leaf have 6.6℃ lower. In the mean time, to measure temperature distribution of the Poinsettia''s leaf by infrared themal type detector while cooled, the part on the both sides of the leaf was better and uniformity. For the Dead zone and humidity control models, the cooling fluctuations of the dry ball temperature and the temperature of the Poinsettia''s leaf can be more as the fog stopping condition approached the wet ball temperature. While the Poinsettia''s leaf was cooling, it were obtained postponed phenomenon, and this postponed time is about 15 seconds; however, the phenomenon of postponement can be improved by increasing the evaporation in facilities. When the fog stopped, shorten interval can reduce temperature of the leaf if time of spraying is the same.
URI: http://hdl.handle.net/11455/35584
其他識別: U0005-2008200914143800
Appears in Collections:生物產業機電工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.