Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3558
DC FieldValueLanguage
dc.contributor王麗芳zh_TW
dc.contributorLi Fang Wangen_US
dc.contributor胡孝光zh_TW
dc.contributor陳崇賢zh_TW
dc.contributorShiaw-Guang Huen_US
dc.contributorChorng-Shyan Chernen_US
dc.contributor.advisor邱信程zh_TW
dc.contributor.advisorHsin-Cheng Chiuen_US
dc.contributor.author曾彥智zh_TW
dc.contributor.authorZeng, Yan-Jhihen_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-06T05:32:08Z-
dc.date.available2014-06-06T05:32:08Z-
dc.identifierU0005-0708200615434200zh_TW
dc.identifier.citation[1] A. D Bangham, M. M. Standish, and J.C. Watkins,J. Mol. Biol., 3,234(1394). [2] M. Mishikawa, H. Hirabayashi, Y. Takakura, and M. Hashida, Drug Delivery System,9, 173(1994). [3] M. Yamato, O. Kwon, M. Hirose, A. Kikuchi, and T. Okano, J.Biomed.Mater . Res. 44, 137 (2000). [4] M. Yamamoto, H. Kanazawa, Y. Matsushima, N. Takai, A. Kikuchi, and T. Okano, Chromatography,21, 209 (2000). [5] D. E. Bergbreiter, B. L. Case, Y. S. Liu, and J. W. Caraway, Macromolecules, 31, 6053 (1998). [6] 科學發展 2002年 5 月 ,353期 [7] H. Huang, T. Kowalewski, E. E. Remsen, R. Gertzmann, and K .L .Wooley , J .Am. Chem. Soc., 119, 11653 (1997) [8] A. S. Hoffman, Macmol. Symp., 98, 645 (1996) [9] P. W. Zhu, D. H. Napper, Chem. Phys. Lett., 51, 256 (1996). [10] M. J. Snowden, B. A. Chowdhry, B. Vincent, G. E. Morris, J. Chem. Soc.m Faraday Trans., 92, 5013 (1996). [11] M. Ishikawa, H. Misawa, N. Kitamura, R. Fujisawa, and H. Masuhara, Bull. Chem. Soc. Jpn., 69, 59 (1996). [12] I. Y. Galaev, B. Mattiasson, Enzyme Microb. Technol., 15, 354(1993). [13] Y. Mylonas, G. Staikos, Langmuir, 15,7172 (1999). [14] K. E. L. Barrett, Wiley , (1975). [15] K. Ito, H. Tsuchida, T. Kitano, Polymer Bulletin, 15, 425 (1986). [16] A. Thieery, A. Skoulios, Makromol Chem., 177, 319 (1977). [17] J. Virtanen, C. Baron, and H. Tenhu, Macromolecules, 336 (2000). [18] M.S. Jones , European Polymer Journal ,35 (1999) 795 – 801. [19] Mi, Kyong Yoo; Yong, Kiel Sung; Young, Moo Lee; Chong, Su Cho , Polymer , 39 , 3703(1998). [20] Mi, Kyong Yoo; Yong, Kiel Sung; Chong, Su Cho; Young, Moo Lee , Polymer , 38 , 2759(1997). [21] H.M. Zareie, V. Bulmus, A.P. Gunning, A.S. Hoffmam, E. Piskin, and V.J Morris, Polymer 41, 6723(2000). [22] A.S. Hoffman, A. Afrassiabi, and L.C. Dong, J. Controlled Release,4.213(1986). [23] M.K. Yoo, Y.K. SUNG, Y.M. Lee, and C.S. Cho, Polymer, 41, 5713(2000). [24] W.Xue,and I.W. Hamley, Polymer,43,3069(2002). [25] T.Hoare,and R. Pelton, langmuir,20,2123(2004). [26] S. Zalipsky , Bioconjugate Chem., 6, 150 (1995). [27] S. Zalipsky, Adv. Drug Deliv. Rev., 16, 157 (1995). [28] E. W. Merril, E. W. Salzman, ASAIO J., 6, 60 (1983). [29] S. Dreborg , B. Akerblom, Crit. Rev. Ther. Drug Carrier Syst., 6, 315 (1990). [30] T. Yamaoka, Y. Tabata, Y. Ikada, J. Pharm. Sci., 83, 601 (1994). [31] G. Blume, G. Cevc, Biochem. Biophys. Acta., 157, 1146 (1993). [32] K. Antosen, A. S. Hoffman, In J. M. Harris (eds.), Plenum Press, 1992, pp. 15-28. [33] S. I. Jeon, J. H. Lee, J. D. Andrade, P. G. de Gennes, J. Colloid Interdace Sci., 142, 149 (1991) [34] J. Ricka, T. Tanaka. Macromolecus, 17, 2916 (2001). [35] H. Bader, H. Ringsdorg, B. Schmidt, Angew. Chem., 123/124, 457(1984). [36] X. Qiu and C. Wu. Macromolecules, 30(25); 7921-7926 (1997). [37] Katerina Karayanni, Georges Staikos.European polymer journal, 36;2645-2650. [38] W. Zhang, L. Shi, Y. An, K. Wu, L. Gao, Z. Liu,R. Ma, Q. Meng, C. Zhao, and B. He. Macromolecules, 37, 2924-2929(2004). [39] G. Staikos, K. Karayanni, Y. Mylonas. Macromol. Chem. Phys,198,2905-2915(1997). [40] W. Zhang, L. Shi, L. Gao, Y.i An, G.g Li, K. Wu, and Z. Liu, 38, Macromolecules ,899-903(2005). [41] M. Li and C. Wu ,Macromolecules, 32, 4311-4316(1999). [42] H. Cheng, L. Shen, and C. Wu,Macromolecules,39(6),2325-2329(2006). [43] J. Francois Gohy , S. Antoun , and R. Jerome, Macromolecules, 4,7435-7440(2001). [44] Schilli,C.M.,M. Zhang, E. Rizzardo, San H. Thang,(Bill) Y.K. Chong, K Edwards, G Karlsson, and Axel H. E. Muller, Macromolecules , 37,7861-7866(2004). [45] X. Andre,M. Zhang, A. H. E. Muller, Macromol Rapid Commun ,26 , 558-563(2005). [46] W. Zhang, L. Shi, R. Ma, Y. An, Y. Xu, and K. Wu, Macromolecules, 38, 8850-8852(2005). [47] O. Adalsteinsson, A. Lamotte, R. F. Baddour, C. K. Colton, A. P. G. M. Whitesides, J. Molecilar Catalysis, 6, 199 (1979). [48] Y. Kaneko, K. Sakai, A. Kikuchi, R. Yoshida, Y. Sakurai, and T.Okano, Macromolecules, 28, 7717 (1995). [49] L. C.Mokrash, Anal.Biochem., 18,64(1967). [50] S. Zalipsky, C.Gilon,and A. Zilkha, J.Polym. Sci.Symp.,19,1177(1983). [51] X. Liu, Li-S. Wang, Biomaterials,25,1929-1936(2004). [52] T. Miyoshi, K. Takegoshi, K. Hikichi, Polymer 38 2315–2320 (1997). [53] T. Miyoshi, K. Takegoshi, K. Hikichi, Polymer 37 11–18 (1996). [54] H.G. Schild and D. A. Tirrell, Langmuir ,7,1319-1324(1991).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3558-
dc.description.abstract本篇利用自由基聚合法製備出三種接枝高分子,高分子A為以PAAc作為主鏈,而以PNIPAAm、PEG作為其側鏈;另兩種接枝高分子則以PAAc作為主鏈,在分別以PNIPAAm及PEG作為其側鏈,分別為高分子B與高分子C。本篇研究高分子在不同pH值下,其結構隨溫度變化而變化,利用紫外光/可見光光譜儀(UV/Vis)觀察其phase transition temperature、粒徑分析儀(DLS)分析在各個溫度區間其粒徑趨勢以及光子散射強度(Scattering intensity)隨溫度變化而有所趨勢之探討。而利用兩種螢光物質pyrene與2-AN作為probe,使用螢光光譜儀來探討其微胞內部結構之疏水變化,更利用1H-NMR來得知高分子鏈隨溫度變化分布情形。 在高分子A方面進而研究在不同pH值下其結構隨溫度變化而改變情形。經實驗發現,高分子A在pH 3.0下,其粒子以數個microdomain所構成,而在pH 5.0則因PAAc部分解離而導致高分子具界面活性劑特性,故造成穩定且較小的結構,至於在pH 7.0則因PAAc大幅度解離因此使結構較為鬆散。在此也利用了高分子B證實了PEG其重要性,而高分子C經文獻得知於高溫時,PEG會因PAAc與PEG氫鍵破壞而導致會往較親水區域延伸。zh_TW
dc.description.abstractTemperature- and pH-induce aggregation of graft copolymers comprising poly(acrylic acid ) (PAAc) as the backbone and poly(N-isopropylacrylamide) (PNIPAAm) and monomethoxy poly(ethylene glycol) (mPEG) as the grafts in different pH buffer solutions was investigated. The graft copolymers undergo complex formation via hydrogen bonding at pH < 3.4 and rearrange into spherical particles with core/shell structure with increasing temperature form 8 oC to 60 oC. The graft copolymers existed as unimers at pH 5.0 below the critical aggregation temperature (CAT), whereas the copolymer self-assembled into core-shell-corona micelles with increasing temperature. With signification increase in degree of PAAc dissociation, the copolymer underwent self-assembling into larger and looser polymeric aggregates above CAT at pH 7.0 due to the formation of the multicore structure. The graft copolymers only with PNIPAAm grafts form more hydrophobic complex particles at pH 3. When the copolymer solution was heated above 20 oC, the particles further aggregate and increase in size without distinct core-shell structure.en_US
dc.description.tableofcontents第一章 緒論(1) 1-1 前言(1) 1-2 研究目的及實驗簡述(1) 第二章 文獻回顧(3) 2-1 雙性高分子簡介(3) 2-2 氮-異丙基丙烯醯胺之性質介紹(3) 2-3 聚乙二醇之性質介紹(4) 2-4 丙烯酸之性質介紹(5) 2-5 高分子微胞簡介(6) 2-6 Hydrogen bonding (H-bonding)(7) 2-7 Hydrophobic interaction(8) 2-8 pH的影響(9) 第三章 實驗部分(11) 3-1 實驗藥品(11) 3-2 實驗儀器及設備(12) 3-3 高分子之合成及性質檢測(12) 3-3-1 Poly(NAS)之合成(13) 3-3-2 PNIPAAm-NH2之合成(13) 3-3-3 PNIPAAm-NH2之性質檢測(14) 3-3-4 mPEG-NH2之合成(14) 3-3-4-1 mPEG-Cl之合成(15) 3-3-4-2 mPEG-N3之合成(15) 3-3-4-3 mPEG-NH2之合成(15) 3-3-5 mPEG之性質檢測(16) 3-3-6 PNIPAAm及mPEG接枝於高分子主鏈之製備(16) 3-3-6-1 A高分子(16) 3-3-6-2 B高分子(17) 3-3-6-2 C高分子(18) 3-3-7 NAS共聚合單體之水解反應(19) 3-3-8接枝高分子之基本性質檢測(21) 3-4 實驗方法(22) 3-4-1 粒徑分析(22) 3-4-2 螢光分析(22) 3-4-2-1由螢光物質焦油腦 (pyrene) 測定(22) 3-4-2-2由螢光物質N-Phenyl-2-Naphthylamine (2-anilinonaphthalene,2-AN) 測定(23) 3-4-2-2表面電位測定(Zeta potential)(23) 第四章、結果與討論(24) 4-1接枝高分子基本性質檢測(24) 4-2 LCST分析(29) 4-3粒徑分析(32) 4-4 Scattering intensity 分析(35) 4-5螢光分析(38) 4-5-12-anilinonaphthalene(N-phenyl-2-naphthylamine)(39) 4-6 Zeta potential測定(43) 4-7 1H-NMR 分析(45) 4-8 不同高分子在pH=3的比較(49) 4-8-1粒徑及Scattering intensity分析比較(49) 4-8-2 1H-NMR 分析比較(52) 第五章、結論(55) 參考文獻(56)zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-0708200615434200en_US
dc.subjectpHen_US
dc.subject微胞zh_TW
dc.subjectmicellesen_US
dc.subjectPNIPAAmen_US
dc.subjectPAAcen_US
dc.subjectPEGen_US
dc.subject接枝zh_TW
dc.subject聚乙二醇zh_TW
dc.subject聚丙烯酸zh_TW
dc.subject聚異丙基丙烯醯胺zh_TW
dc.title聚丙烯酸/聚異丙基丙烯醯胺/聚乙二醇接枝高分子之微胞結構與pH值效應探討zh_TW
dc.titleStructural Response of PAAc/PNIPAAm/PEG Graft Copolymers in Aqueous Phase to pH Changesen_US
dc.typeThesis and Dissertationzh_TW
item.openairetypeThesis and Dissertation-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
item.fulltextno fulltext-
item.cerifentitytypePublications-
item.languageiso639-1en_US-
Appears in Collections:化學工程學系所
Show simple item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.