Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3560
標題: 奈米複合創傷敷料
Studies of NanoBiomaterials for Wound Dressings
作者: 周志謂
Chou, Chih-Wei
關鍵字: wound dressing;創傷敷料;gold nanoparticles;silver nanoparticles;nanocomposite;聚胺基甲酸酯;奈米金;奈米銀;奈米複合傷口敷料
出版社: 化學工程學系所
引用: 1.5 References [1] Asmussen PD, Cohen IK, Sveistrup O, (eds) The principles of wound healing. Richmond, VA Medcom, Inc. 1990 [2] Wright N, Alison M. The biology of epithelial cell populations. Clarendon press 1984; p.283 [3] Stenn S, Malhotra R. Epithelialization. In Wound Healing. C Cohen (ed) WB Saunders, Philadelphia, PA 1992; p.115 [4] Clark R, Folkvard J, Wortz R. Fibronectins, as well as other extracellular matrix proteins mediate human keratinocyte adherence. Journal of Investigative Dermatology 1985; 84: p.378 [5] Grinnell F. Distribution of fibronectin during wound healing in vivo. Journal of Investigative Dermatology 1981; 76: p.181 [6] Grillo H. Origin of fibroblasts in wound healing. Annals of Surgery 1963; 157: p.453 [7] Raghow R. The role of extracellular matrix in post inflammatory wound healing and fibrosis. FASEB J 1994; 8: p.823 [8] Weigel P, Fuller G, LeBoeuf R. The model for the role of hyaluronic acid and fibrin in the early events during the inflammatory response and wound healing. J Theor Biol 1986; 119: p.219 [9] Madden J, Peacock E. Studies on the biology of collagen during wound healing. Annals of Surgery 1971; 174 (3): p.511 [10] Posposilov J, Riebelov V. Fibronectin-its significance in wound re-epithelialization. Acta Chirurgiae Plasticae 1986; 28: p.96 [11] Guo M, Toda K, Grinnell F. Activation of human keratinocyte migration on type I collagen and fibronectin. Journal of Cell Science 1990; 96: p.197 [12] Raymund E. Horch, Andrew M. Munster, Bruce M. Achauer (eds): Cultured human keratinocytes and tissue engineered skin substitutes, New York, Thieme 2001; p.23 [13] Schilling JA. Wound healing. Surg Clin North Am 1976; 56: p.859 [14] Kaplan, AP. Hageman factor dependent pathway: Mechanism of initiation and bradykinin formation. Fed. Proc. 1983; 42: p.3123 [15] Knighton DR, Ciresi K and Fiegel VD. Stimulation of repair in chronic nonhealing, cutaneous ulcers using platelet derived wound healing formula. Surg. Gynecol. Obstet. 1990; 170: p.56 [16] Gorman RR. Prostaglandins, thromboxanes and prostacyclins. Int. Rev. Biochem. 1978; 48: p.81 [17] Karasck M. Mechanism of angiogenesis in normal and diseased skin. International Journal of Dermatology 1991; 30: p.831 [18] Leibovich S, Ross R. The role of the macrophage in wound repair. American Journal of Pathology 1975; 78: p.71 [19] Doillon C, Dunn M, Bender E. Collagen fiber formation in repair tissue: Development of strength and toughness. Collagen and Related Research 1985; 5: p.481 [20] Takashima A, Grinnell F. Human keratinocyte adhesion and phagocytosis. Prompted by fibronectin. Journal of Investigatiive Dermatology 1984; 83: p.352 [21] Donaldson D, Mahan J. Fibrinogen and fibronectin as substrates for epidermal cell migration during wound closure. Journal of Cell Science 1983; 62: p.117 [22] Grinnell F. Distribution of fibronectin during wound healing in vivo. Journal of Investigative Dermatology 1981; 76: p.181 [23] Ehrlich. The role of connective tissue matrix in wound healing. Prog Clin Biol Res 1988; 266: p.243 [24] Miller E, Gay S. The collagens: an overview. Methods Enzymol 1987; 144: p.3 [25] Stenn K, Malhotia R. Epithelialization in wound healing: biochemical and clinical aspects. Cohen K, Editor, Saunders, Philadelphia 1992; p.115 [26] Miller E, Gay S. Collagen structure and function in wound healing: biochemical and clinical aspects. Cohen K, Editor, Saunders, Philadelphia 1992; p.130 [27] Wahl LM, Wahl SM. Inflammation, in Cohen IK, Diegelman RF, Lindblad WJ (eds). Wound Healing: Biochemical and Clinical Aspects. Philadelphia, PA, W.B. Saunders, 1992; p.40 [28] Winter GD. Formation of the scab and the rate of epithelialization of superficial wounds in the skin of the young domestic pig. Nature 1962; 193: p.293 [29] Kerstein MD. Introduction: moist wound healing. American Journal of Surgery 1994; 167(1A Suppl): 1S-6S [30] Lazarus G, Cooper D, Knighton D, Margolis D, Pecoraro R, Rodeheaver G, Robson. Definitions and guidelines for assessment of wounds and evaluation of healing. Archives of Dermatology 1994; 130: p.489 [31] Wheeland RG. Wound healing and the newer surgical dressings. In: Moschella St., Hurley HJ. Dermatology, Philadelphia: WB Saunders 1992; p.2305 [32] Silverman RA, Lender J, Elmets CA. Effects of occlusive and semiocclusive dressings in the return of barrier function to trans-epidermal water loss in standardized human wounds. J Am Acad Dermatology 1989; 20: p.755 [33] Mertz PM, Eaglstein WH. The effect of a semiocclusive dressing on the microbial population in superficial wounds. Arch Surgery 1984; 119: p.287 [34] Katz MH, Alvarez AF, Kirsner RS. Human wound fluid from acute wounds stimulates fibroblast and endothelial cell growth. J Am Acad Dermatol 1991; 25: p.1054 [35] Madden MR, Nolan E, Finkelstein JL. Comparison of an occlusive and semi-occlusive dressing and the effect of the wound exudate upon Keratinocyte proliferation. J Trauma 1989, 29: p.924 [36] Kannon G, Garrett A. Most wound healing with occlusive dressings. Dermatol Surg 1995; 21: p.583 [37] Field C, Kerstein M. Overview of wound healing in a moist environment. Am J Surg 1994; 167: p.2 [38] Bolton L, Monte K, Pirone L. Moisture and healing: beyond the jargon. Ostomy/Wound Management 2000; 46: p.51 [39] Wheeland RG. Wound healing and the newer surgical dressings. In: Moschella SL, Hurley HJ, et al, eds. Dermatology. Philadelphia: WB Saunders, 1992; p.2305 [40] Eaglstein WH. Experiences with biosynthetic dressings. J Am Acad Dermatol 1985; 12: p.434 [41] Sawada Y, Suzuki T, Hatayama I. Silicone gel including antimicrobial agent. Br J Plast Surg 1990; 43: p.48 [42] Raab B. A new hydrophilic copolymer membrane for dermabrasion. J Dermatol Surg Oncol 1991; 17: p.323 [43] Samson RH. Compression stockings and non-continuous use of polyurethane foam dressings for the treatment of venous ulceration. J Dermatol Surg Oncol 1993; 19: p.68 [44] Rubin JR, Alexander J, Plecha EJ. Unna's boot vs polyurethane foam dressings for the treatment of venous ulceration. Arch Surgery 1990; 125: p.489 [45] Porter JM. A comparative investigation of re-epithelialization of split skin graft donor areas after application of hydrocolloid and alginate dressings. Br J Plast Surg 1991; 44: p.333 [46] Afilalo M, Guttman A, Lloyd J. DuoDERM hyrdroactive dressing versus silver sulphadia/Bactigras in the emergency-treatment of partial skin thickness burns. Burns 1992; 18: p.313 [47] Gorse CJ, Messner RL. Improved pressure sore healing with hydrocolloid dressings. Arch Dermatol 1987: 123: p.766 [48] Eriksson G. Comparison of two occlusive bandages in the treatment of venous leg ulcers. Br J Dermatol 1986; 114: p.227 [49] Eisenberg M. The effect of occlusive dressings of re-epithelializations of wounds in children with epidermolysis bullosa. Journal of Pediatric Surgery 1986; 21 : p.892 [50] Phillips TJ, Kapoor V, Provan A. A randomized prospectlvc study of a hydroactivc dressing vs conventional treatment after shave biopsy excision. Arch Dermatrol l993; 129: p.859 [51] Leipriger LS, Glushko V, DiBernardo I. Dermal wound repair: role of collagen matrix implants and synthetic polymer dressings. J Am Acad Dermatol 1985;12: p.409 [52] Placquadio D, Nelson DB. Alginates A “new” dressing alternative. J Dermatol Surg Oncol 1992;18: p.90 [53] Frazier R, Gilchrist T. Sorbsan calcium alginate fiber dressings in footcare. Biomaterials 1983; 4: p.222 [54] Lawrence JE, Blake GB. A comparison of calcium alginate and scarlet red dressings in the healing of split thickness skin graft donor sites. Br Plast Surg 1991; 44: p.247 [55] Yang J-Y, Tsai Y-C, Noordhoff MS. Clinical comparison of commercially available Biobrane preparations. Burns 1989; 15: p.197 [56] Bolton LL, Johnson CL, Rijswijk LV. Occlusive dressings: therapeutic agents and effects on drug delivery. Clinics Dermatol1992; 9: p.573 [57] Mertz PM, Eaglstein WH. The effect of a semiocclusive dressing on the microbial population in superficial wounds. Arch Surgery 1984; 119: p.287 [58] Buchan IA, Andrews JK, Lang SM. Clinical and laboratory investigation of the composition and properties of human skin wound exudate under semi-permeable dressings. Burns 1980; 7: p.326 [59] Handfield-Jones SE, Grattan CEH, Simpson RA. Comparison of a hydrocolloid dressing and paraffin gauze in the treatment of venous ulcers. Br J Dermatol 1988; 118: p.425 [60] Gilchrist B, Reed C. The bacteriology of chronic venous ulcers treated with occlusive hydrocolloid dressings. Br J Dermatol 1989; 121: p.337 [61] Apelqvist J, Larsson J, Stenstrom A. Topical treatment of necrotic foot ulcers in diabetic patients: a comparative trial of DuoDerm and MeZinc. Br J Dermatol 1990; 123: p.787 [62] Varghese MC, Balin AK, Carter DM, et al. Local environment of chronic wounds under synthetic dressings. Arch Dermatol 1986; 122: p.52 [63] Hutchinson JJ, McGuckin M. Occlusive dressings: A microbiologic and clinical review. Am J Infect Control 1990; 18: p.257 [64] Purna SK and Babu M. Collagen based dressings - a review. Burns 2000; 26: p.54 [65] Fukasawa M, Abe H, Masaoka T, Orita H, Horikawa H, Campeau JD, Ashio M. The hemostatic effect of deacetylated chitin membrane on peritoneal injury in rabbit model Surg Today 1992; 22: p.333 [66] Rao SB, Sharma CP. Use of chitosan as a biomaterial: Studies on its safety and hemostatic potential. J Biomed Mater Res 1997; 34 : p.21 [67] Cho YW, Cho YN, Chung SH, Yoo G, Ko SW. Water-soluble chitin as a wound healing accelerator. Biomaterials 1999; 20: p.2139 2.5 References [1] Schon G, Simon U. A fascinating new field in colloid science: small ligand-stabilized metal clusters and possible application in microelectronics. Colloid Polym Sci 1995; 273: p.101 [2] Ramos J, Millán A, Palacio F. Production of magnetic nanoparticles in a polyvinylpyridine matrix. Polymer 2000; 41: p.8461 [3] Zhang J, Wang B, Ju X, Liu T, Hu T. New observations on the optical properties of PPV/TiO2 nanocomposites. Polymer 2001; 42: p.3697 [4] Chiang PC, Whang WT. The synthesis and morphology characteristic study of BAO-ODPA polyimide/TiO2 nano hybrid films. Polymer 2003; 44: p.2249 [5] BrovKo OO, Sergeeva LM, Kuznetsova VP, Lemeshko VN. Dynamic mechanical studies of polyurethane semi-interpenetrating polymer networks filled with γFe2O3. Eur Polym J 1998; 35: p.2045 [6] Morrish AH, Haneda K, Mag J. Mössbauer study of acicular iron-nitride particles. Magn Mater 1983; 35: p.105 [7] Kay E, Hecq M. Metal clusters in plasma polymerized matrices: Gold. J Appl Phys 1984; 55: p.370 [8] Martinu L, Biederman H, Zemek J. Metal doped polymer films prepared by simultaneous plasma polymerization of tetrafluoromethane and evaporation of gold. Vacuum 1985; 35: p.171 [9] Lamber R, Wetjen S, Schulz-Ekloff G, Baalmann A. Metal Clusters in Plasma Polymer Matrices: Gold Clusters. J Phys Chem 1995; 99: p.13834 [10] Moffitt M, MacMahon L, Pessel V, Eisenberg A. Size Control of Nanoparticles in Semiconductor-Polymer Composites. 2. Control via Sizes of Spherical Ionic Microdomains in Styrene-Based Diblock Ionomers. Chem Mater 1995; 7: p.1185 [11] Gogolewski. Selected topics in biomedical polyurethanes. A review. Colloid Polym Sci 1989; 267: p.757 [12] Kim BK, Lee JC. Waterborne polyurethanes and theirproperties. J Polym Sci Polym Chem. 1996; 34: p.1095 [13] Chen SA, Hsu JS. Makromol. Chem. 1992; 193: p.423 [14] Kim BK, Seo JW, Jeong HM. Morphology and properties of waterborne polyurethane/clay nanocomposites. Eur Polym J 2003; 39: p.85 [15] Zhou S, Wu L, Sun J, Shen W. The change of the properties of acrylic-based polyurethane via addition of nano-silica. Prog Org Coat 2002; 45: p.33 [16] David DJ & Staley HB (ed.). Analytical Chemistry of the Polyurethane, Wiley, New York, 1969: p. 357 [17] Kaplan DS. J Appl Polym Sci 1970; 20: p.2615 [18] Schultz AR, Young AL. DSC on Freeze-Dried Poly(methyl methacrylate)-Polystyrene Blends. Macromolecules 1980; 13: p.663 [19] Vaia RA, Ishii H, Giannelis EP. Synthesis and Properties of Two-Dimensional Nanostructures by Direct Intercalation of Polymer Melts in Layered Silicates. Chem Mater 1993; 5: p.1694 [20] Takahashi T, Ogata N. Epitaxial crystallization of polyoxymethylene in the course of polymerization in aqueous solution. J Polym Sci Part B 1971; 9: p.895 [21] Al-Ghazawi M, Sheldon PR. J Polym Sci Polym Lett 1983; 2: p.347 [22] Senich GA, MacKnight WJ. Fourier Transform Infrared Thermal Analysis of a Segmented Polyurethane Macromolecules 1980; 13: p.106 [23] Sung CSP, Schneider NS. Structure-property relationships of polyurethanes based on toluene di-isocyanate. J Mater Sci 1978; 13: p.1689 [24] Teo LS, Chen CY, Kuo JF. Fourier Transform Infrared Spectroscopy Study on Effects of Temperature on Hydrogen Bonding in Amine-Containing Polyurethanes and Poly(urethane-urea)s. Macromolecules 1997; 30: p.1793 [25] Wang CB, Cooper SL. Morphology and Properties of Segmented Polyether Polyurethaneureas. Macromolecules 1983; 16: p.775 [26] Elabd YA, Sloan JM, Barbari TA. Diffusion of acetonitrile in conformational isomers of an H12MDI Polyurethane. Polymer 2000; 41: p.2203 [27] Landry CJT, Coltrain BK, Landry MR, Fitzgerald JJ, Long VK. Poly(viny1 acetate)/Silica Filled Materials: Material Properties of in Situ vs Fumed Silica Particles. Macromolecules 1993; 26: p.3702 [28] Huang HH, Wilkers GL, Carlson JG. Structure-property behaviour of hybrid materials incorporating tetraethoxysilane with multifunctional poly(tetramethylene oxide) Polymer 1989; 30: p.2001 3.6 References [1] Pinchuk L. A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of `biostable'' polyurethanes. J Biomater Sci Polym Edn 1994; 6: p.225 [2] Lelah MD, Cooper SL. Polyurethane in Medicine 1986: p.43 CRC Press, Boca Raton, Florida. [3] Stokes K,, Coury A, Urbanski P. Autooxidative degradation of implanted polyether polyurethane devices. J Biomater Appl 1987;1 : p.411 [4] Ratner BD, Gladhill KW, Horbett TA. Analysis of in vitro enzymatic and oxidative degradation of polyurethanes. J Biomed Mater Res 1988; 22: p.509 [5] Zhao Q, Topham N, Anderson JM, Hiltner A, Lodoen GA, Payet CR. Foreign-body giant cells and polyurethane biostability: In vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res 1991; 25: p.177 [6] Hergenrother RW, Wabers HD, Cooper SL. Effect of hard segment chemistry and strain on the stability of polyurethanes: in vivo biostability. Biomaterials 1993; 14: p.449 [7] Wu Y, Zhao Q, Anderson JM, Hiltner A, Lodoen GA, Payet CR. Effect of some additives on the biostability of a poly(etherurethane) elastomer. J Biomed Mater Res 1991; 25: p.725 [8] Bouvier M, Chawla AS, Hinberg I. In vitro degradation of a poly(ether urethane) by trypsin. J Biomed Mater Res 1991; 25: p.773 [9] Santerre JP, Labow RS, Adams GA. Enzvme-biomaterial interactions: Effect of bioiystems on degradation of polyurethanes. J Biomed Mater Res 1993; 27: p.97 [10] Xi T, Sato M, Nakamura A, Kawasaki Y, Umemura T, Tsuda M, Kurokawa Y. Degradation of polyetherurethane by subcutaneous implantation into rats. I. Molecular weight change and surface morphology. J Biomed Mater Res 1994; 28: p.483 [11] Sato M, Xi T, Nakamura A, Kawasaki Y, Umemura T, Tsuda M, Kurokawa Y. Degradation of polyetherurethane by subcutaneous implantation into rats. II. Changes of contact angles, infrared spectra, and nuclear magnetic resonance spectra. J Biomed Mater Res 1995; 29: p.1201 [12] Takahara A, Coury AJ, Hergenrother RW, Cooper SL. Effect of soft segment chemistry on the biostability of segmented polyurethanes. I. In vitro oxidation. J Biomed Mater Res 1991; 25: p.341 [13] Lim F, Yang CZ, Cooper SL. Synthesis, characterization and ex vivo evaluation of polydimethylsiloxane polyurea-urethanes. Biomaterials, 1994; 15: p.408 [14] Stokes K, McVenes R. Polyurethane elastomer biostability. J. Biomater. Appl. 1995:9:321-354. [15] Mathur AB, Collier TO, Kao WJ, Wiggins M, Schubert MA, Hiltner A and Anderson JM. In vivo biocompatibility and biostability of modified polyurethanes. J Biomed Mater Res 1997; 36: p.246 [16] Hsu S, Chen J. Enhanced biostability by using butenediol as chain extenders in the synthesis of poly(ether)urethanes. Polymer Degradation and Stability 1999; 65: p.341 [17] David DJ, Staley HB (ed.). Analytical Chemistry of the Polyurethane. Wiley, New York, 1969; p.357 [18] Hsu S, Huang T. The susceptibility of poly(ether)urethanes to enzymatic degradationafter oxidative pretreatment. Polymer Degradation and Stability 2000; 67: p.171 [19] Haruta M. Chem. Res. 2003; 3: p.75 [20] Guczi L, Peto G, Beck A, Frey K, Geszti O, Molnar G, Daroczi C. Gold Nanoparticles Deposited on SiO2/Si(100): Correlation between Size, Electron Structure, and Activity in CO Oxidation. J Am Chem Soc. 2003; 125: p.4332 [21] Hsu S, Chou CW, Tseng SM. Enhanced thermal and mechanical properties in polyurethane/Au nanocomposites. Macromol. Mater Eng 2004; 289: p.1096 [22] Dalby MJ, Giannaras D, Riehle MO, Gadegaard N, Affrossman S, Curtis ASG Rapid fibroblast adhesion to 27nm high polymer demixednano-topography. Biomaterials 2004; 25: p.77 [23] Buttiglieri S, Pasqui D, Migliori M, Johnstone H, Affrossman S, Sereni L, Wratten ML, Barbucci R, Tetta C, Camussi G. Endothelization and adherence of leucocytes to nanostructured surfaces. Biomaterials, 2003; 24: p.2731 4.5 References [1] Rong M, Zhang M, Liu H, Zeng H. Synthesis of silver nanoparticles and their self-organization behavior in epoxy resin. Polymer 1999; 40: p.6169 [2] Liu FK, Hsieh SY, Ko FH, Chu TC. Synthesis of gold/poly(methyl methacrylate) hybrid nanocomposites. Colloids and Surfaces A: Physicochem Eng Aspects 2003; 231: p.31 [3] Akamatsu K, Deki S. TEM investigation and electrondiffraction study on dispersion of gold nanoparticles into a Nylon 11 thin film during heat treatment. J Colloid Inter Sci 1999; 214: p.353 [4] Deki S, Akamatsu K, Hatakenaka Y, Mizuhata M, Kajinami A. Synthesis and characterization of nano-sized golg-palladium bimetallic particles dispersed in polymer thin film matrix. NanoStructured Materials 1999; 11: p.59 [5] Inouea Y, M Fujii, Inataa M, Hayashi S, Yamamoto K, Akamatsu K, Deki S. Single-electron tunneling effects in thin Nylon 11 films containing gold nanoparticles. Thin Solid Films 2000; 372: p.169 [6] Brovko OO, Sergeeva LM, Kuznetsova VP, Lemeshko VN. Dynamic mechanical studies of polyurethane semi-interpenetrating polymer networks filled with γFe2O3. Eur Poly J 1998; 35: p.2045 [7] Chen W, Yuan Y, Yan L. Preparation of organic/inorganic nanocomposites with polyacrylamide (PAM) hydrogel by 60Co γ irradiation. Mater Res Bull 2000; 35: p.807 [8] Akamatsu K, Takei S, Mizuhata M, Kajinami A, Deki S, Takeoka S, M Fujii, Hayashi S, Yamamoto K. Preparation and characterization of polymer thin films containing silver and silver sulfide nanoparticles. Thin Solid Films 2000; 359: p.55 [9] Hsu S, Chou CW. Enhanced biostability of polyurethane containing gold nanoparticles Polymer Degradation and Stability 2004; 85: p.675 [10] Hsu S, Chou CW, Tseng SM. Enhanced thermal and mechanical properties in polyurethane/Au nanocomposites. Macromol Mater Eng 2004; 289: p.1096 [11] Bronstein LM, Chernyshov DM, Volkov IO, Ezernitskaya MG, Valetsky PM, Matveeva VG, Sulman EM. Structure and properties of bimetallic colloids formed in polystyrene-block-Poly-4-vinylpyridine micelles: Catalytic behavior in selective hydrogenation of dehydrolinalool. J Catal 2000; 196: p.302 [12] Heilmann A, Hamann C. Prog Colloid & Polym Sci 1991; 85: p.102 [13] Chakrabarty D, Das B, Roy S. Epoxy resin-Poly(ethyl methacrylate) interpenetrating polymer networks: morphology, mechanical,and thermal properties J Appl. Polym Sci 1998; 67: p.1051 [14] Cai S, Xia X, Xie C. Corrosion behavior of copper/LDPE nanocomposites in simulated uterine solution. Biomaterials 2005; 26: p.2671 [15] Pinchuk L. A review of the biostability and carcinogenicity of polyurethanes in medicine and the new generation of `biostable'' polyurethanes. J Biomater Sci Polym Edn 1994; 6: p.225 [16] Lelah MD and Cooper SL. Polyurethane in Medicine, 1986; p.43-86, CRC Press, Boca Raton, Florida. [17] Zhao Q, Topham N, Anderson JM, Hiltner A, Lodoen GA, Payet CR. Foreign-body giant cells and polyurethane biostability : In vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res 1991; 25: p.177 [18] Takahara A, Coury AJ, Hergenrother RW, Cooper SL. Effect of soft segment chemistry on the biostability of segmented polyurethanes. I. In vitro oxidation. J Biomed Mater Res 1991; 25: p.341 [19] Lim F, Yang CZ, Cooper SL. Synthesis, characterization and ex vivo evaluation of polydimethylsiloxane polyurea-urethanes. Biomaterials 1994; 15: p.408 [20] Stokes K, McVenes R. Polyurethane elastomer biostability. J Biomater Appl 1995:9: p.321 [21] Mathur AB, Collier TO, Kao WJ, Wiggins M, Schubert MA, Hiltner A, Anderson JM. In vivo biocompatibility and biostability of modified polyurethanes.J Biomed Mater Res 1997; 36: p.246 [22] Hsu S, Chen J. Enhanced biostability by using butenediol as chain extenders in the synthesis of poly(ether)urethanes. Polymer Degradation and Stability 1999; 65: p.341 [23] Hergenrother RW, Wabers HD, Cooper SL. Effect of hard segment chemistry and strain on the stability of polyurethanes: in vivo biostability Biomaterials 1993; 14: p.449 [24] Hsu S, Huang T. The susceptibility of poly(ether)urethanes to enzymatic degradation after oxidative pretreatment. Polymer Degradation and Stability 2000; 67: p.171 [25] Senich GA, MacKnight WJ. Fourier transform infrared thermal analysis of a segmented polyurethane. Macromolecules 1980; 13: p.106 [26] Sung CSP, Schneider NS. Structure-property relationships of polyurethanes based on toluene di-isocyanate. J Mater Sci 1978; 13: p.1689 [27] Teo LS, Chen CY, Kuo JF. Fourier transform infrared spectroscopy study on effects of temperature on hydrogen bonding in amine-containing polyurethanes and poly(urethane-urea)s. Macromolecules 1997; 30: p.1793 [28] Wang CB, Cooper SL. Morphology and properties of segmented polyether polyurethaneureas. Macromolecules 1983; 16: p.775 [29] Huang HH, Wilkers GL, Carlson JG. Structure-property behaviour of hybrid materials incorporating tetraethoxysilane with multifunctional poly(tetramethylene oxide). Polymer 1989; 30: p.2001 [30] Dalby MJ, Giannaras D, Riehle MO, Gadegaard N, Affrossman S, Curtis ASG. Rapid fibroblast adhesion to 27nm high polymer demixed nano-topography. Biomaterials 2004; 25: p.77 [31] Hsu S, Tang CM, Lin CC. Biocompatibility of poly(e-caprolactone)/poly(ethylene glycol) diblock copolymers with nanophase separation. Biomaterials 2004; 25: p.5593 [32] Chu CS, McManus AT, Pruitt BA, Mason AD. J Trauma 1988; 28: p.1488 [33] Bechert T, Steinr.ucke P, Guggenbichler JP. A new method for screening anti-infective biomaterials. Nat. Med. 2000; 6: p.1053 [34] Wyatt D, McGowan DN, Najarian MP. J. Trauma. 1990; 30: p.857 [35] Deitch EA, Marin A, Malakanov V, Albright JA. J. Trauma. 1987; 27: p.301 [36] Bechert T, B.oswald M, Lugauer S, Regenfus A, Greil J, Guggenbichler JP. Infection 1999; 27(Suppl 1): S24. [37] Margraff HW, Covey TH. A trial of silver-zinc-allantoinate in the treatment of leg ulcers. Arch Surg 1977; 112: p.699 [38] Alt V, Bechert T, Steinrücke P, Wagener M, Seidel P, Dingeldein E, Domanne E, Schnettler R. An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cemen. Biomaterials 2004; 25: p.4383 5.6 References [1] Lamba N, Woodhouse K, Cooper S. Polyurethanes in biomedical applications. Boca Raton, FL: CRC press; 1998. [2] Hsu S, Tseng H, Wu M. Comparative in vitro evaluation of two different preparations of small diameter polyurethane vascular grafts. Artif Organs 2000; 24:119-128. [3] Kuan H, Ma M, Chang W, Yuen S, Wu H, Lee T. Synthesis, thermal, mechanical and rheological properties of multiwall carbon nanotube/waterborne polyurethane nanocomposite. Compos Sci Technol 2005; 65:1703-1710. [4] Kim B, Lee J. Waterborne polyurethanes and theirproperties. J Polym Sci Polym Chem 1996; 34:1095-1104. [5] Stokes K, Coury A, Urbanski P. Autooxidative degradation of implanted polyether polyurethane devices. J Biomater Appl 1987; 1:411-448. [6] Wiggins M, Wilkoff B, Anderson J, Hiltner A. Biodegradation of polyether polyurethane inner insulation in bipolar pacemaker leads. J Biomed Mater Res 2001; 58:302-307. [7] Zhao Q, Topham N, Anderson J, Hiltner A, Lodoen G, Payet C. Foreign-body giant cells and polyurethane biostability: in vivo correlation of cell adhesion and surface cracking. J Biomed Mater Res 1991; 25:177-183. [8] Stokes K, McVenes R. Polyurethane elastomer biostability. J Biomater Appl 1995; 9:321-354. [9] Hsu S, Lin Z. Biocompatibility and biostability of a series of poly(carbonate)urethanes. Colloids Surf B 2004; 36:1-12. [10] Christenson E, Wiggins M, Anderson J, Hiltner A. Surface modification of poly(ether urethane urea) with modified dehydroepiandrosterone for improved in vivo biostability. J Biomed Mater Res. 2005; 73:108-115. [11] Schubert M, Wiggins M, DeFife K, Hiltner A, Anderson J. Vitamin E as an antioxidant for poly(etherurethane urea) in vivo studies. J Biomed Mater Res 1996; 32:493-504. [12] Schubert M, Wiggins M, Anderson J, Hiltner A. Comparison of two antioxidants for poly(etherurethane urea) in an accelerated in vitro biodegradation system. J Biomed Mater Res 1997; 34:493-505. [13] Schon G, Simon U. A fascinating new field in colloid science: small ligand-stabilized metal clusters and possible application in microelectronics. Colloid Polym. Sci. 1995; 273:101-117. [14] Ramos J, Milla´n* A, Palacio F. Production of magnetic nanoparticles in a polyvinylpyridine matrix. Polymer 2000; 41:8461-8464. [15] Zhang J, Wang B, Ju X, Liu T, Hu T. New observations on the optical properties of PPV/TiO2 nanocomposites. Polymer 2001; 42:3697-3702. [16] Chiang P, Whang W. The synthesis and morphology characteristic study of BAO-ODPA polyimide/TiO2 nano hybrid films. Polymer 2003; 44:2249-2254. [17] Hsu S, Chou C, Tseng S. Enhanced thermal and mechanical properties in polyurethane/Au nanocomposites. Macromol Mater Eng 2004; 289:1096-1101. [18] Hsu S, Chou C. Enhanced biostability of polyurethane containing gold nanoparticles. Polym Degradation Stab 2004; 85:675-680. [19] Chou C, Hsu S, Chang H, Tseng S, Lin H. Enhanced thermal and mechanical properties and biostability of polyurethane containing silver nanoparticles Polym Degradation Stab 2006; 91:1017-1024. [20] Hsu S, Tang C, Tseng H. Biocompatibility of poly(ether)urethane-gold nanocomposites Journal of Biomedical Materials Research Part A 2006. [21] Collier T, Tan J, Shive M, Hasan S, Hiltner A, Anderson J. Biocompatibility of poly(etherurethane urea) containing dehydroepiandrosterone. J Biomed Mater Res 1998; 41:192-201. [22] Kao W, Hiltner A, Anderson J, Lodoen G. Theoretical analysis of in vivo macrophage adhesion and foreign body giant cell formation on strained poly (etherurethane urea) elastomers. J Biomed Mater Res 1994; 2:819-829. [23] David D, Staley H. Analytical chemistry of the polyurethane. New York:Wiley-Interscience; 1969, p.357-359. [24] Hsu S,Chen J. Enhanced biostability by using butenediol as chain extenders in the synthesis of poly(ether)urethanes. Polymer Degradation and Stability 1999; 65:341-345. [25] Hergenrother RW, Wabers HD, Cooper SL. Effect of hard segment chemistry and strain on the stability of polyurethanes: in vivo biostability Biomaterials 1993; 14: 449- [26] Hsu S, Huang T. The susceptibility of poly(ether)urethanes to enzymatic degradation after oxidative pretreatment. Polymer Degradation and Stability 2000; 67:171-178. [27] McCarthy S, Meijs G, Mitchell N, Gunatillake P, Heath G, Brandwood A, Schindhelm K. In-vivo degradation of polyurethanes: transmission—FTIR microscopic characterization of olyurethanes sectioned by cryomicrotomy. Biomaterials 1997; 18:1387-409. [28] Chen K, Kuo J, Chen C. Synthesis, characterization and platelet adhesion studies of novel ion-containing aliphatic polyurethanes. Biomaterials 2000; 21:161-171. [29] Schubert M, Wiggins M, Schaefer M, Hiltner A, Anderson J. Oxidative biodegradation mechanisms of biaxially strained poly(etherurethane urea) elastomers. J Biomed Mater Res 1995; 29:337-347. [30] Wu Y, Sellitti C, Anderson J, Hiltner A, Lodoen G, Payet C. An FTIR-ATR investigation of in vivo poly(etherurethane) degradation. J Appl Polym Sci 1992; 46:201-211. [31] Mathur A, Collier T, Kao W, Wiggins M, Schubert M, Hiltner A, Anderson J. In vivo biocompatibility and biostability of modified polyurethanes. J Biomed Mater Res 1997; 36:246-257. [32] Renier M, Wu Y, Anderson J, Hiltner A, Lodoen G, Payet C. Characterization of extractable species from poly(etherurethane urea) (PEUU) elastomers. J Biomed Mater Res 1994; 5:511-529. [33] Wu Y, Zhao Q, Anderson J, Hiltner A, Lodoen G, and Payet C. Effect of some additives on the biostability of a poly(etherurethane) elastomer. J Biomed Mater Res 1991; 25:725-739. [34] Zhao Q, Anderson J, Hiltner A, Lodoen G, Payet C. Theoretical analysis on cell size distribution and kinetics of foreign-body giant cell formation in vivo on polyurethane elastomers. J Biomed Mater Res 1992; 2:1019-1038. [35] Anderson J, Hiltner A, Zhao Q, Wu Y, Renier M, Schubert M, Brunstedt M, Lodoen G, Payet C. Cell/Polymer interactions in biodegradation of polyurethanes. Biodegrad Polym Plastics 1992; 122-136. 6.5 References [1] Lowman A M, and Peppas N A. ‘‘Hydrogels,'' Encyclopedia of Controlled Drug DeliRery, E. Mathiowitz, ed., Wiley, New York, 1999, pp.397-418. [2] Peppas NA. Hydrogels in Medicine and Pharmacy, CRC Press, Boca. Raton, FL 1987. [3] Peppas NA. ‘‘Intelligent Hydrogels and their Biotechnological and Separation Applications,'' Radiation Synthesis of Intelligent Hydrogels and Membranes for Separation Purposes,'' G. Guven, ed., IAEA, Vienna, 2000; 14: pp.1. [4] Peppas NA. Fundamentals of pH- and Temperature-SensitiRe DeliR-ery Systems in Pulsatile Drug DeliRery, R. Gurny, H. E. Junginger, and N. A. Peppas, eds., Wissenschaftliche Verlagsgesellschaft, Stuttgart 1993; 56: pp.41 [5] Işık B., Swelling Behavior and Determination of DiffusionCharacteristics of Acrylamide-Acrylic Acid Hydrogels. J Appl Polym Sci 2004; 91: 1289-1293. [6] Sawahata K., Hara M. Yasunaga H. and Osada Y., Electrically controlled drug delivery system using polyelectrolyte gels. J. Contr. Rel. 1990; 14: 253-262. [7] Kwon I. C., Bae Y. H. And Kim S. W. Electrically erodible polymer gel for controlled release of drugs. Nature 1991; 354: 291-293. [8] Karadae E, Saraydın DC, Gu O. In vitro swelling studies and preliminary biocompatibility evaluation of acrylamide-based hydrogels. Biomaterials 1996; 17: 67 [9] Saraydın D, Karadae E, Gu O. Acrylamide/maleic acid hydrogels. Polym Adv Technol 1994; 6: 719 [10] Gudeman L F and Peppas N A Preparation and characterization of pH-sensitive, interpenetrating networks of poly(vinyl alcohol) and poly(acrylic acid). J Appl Polym Sci 1995; 55: 919. [11] Tong Z, Liu X. Swelling Equilibria and Volume Phase Transition in Hydrogels with Strongly Dissociating Electrolytes. Macromolecules 1994; 27: 844. [12] Li X, Huang Y, Xiao J, Yan C. pH responsive PAIAm-g-PIPA microspheres: Preparation and drug release. J Appl Polym Sci 1995; 55: 1779. [13] Rodrĭguez E, Katime I. Somemechanicalproperties of poly [(acrylic acid)-co-(itaconic acid)] hydrogels. Macromol. Mater. Eng. 2003; 288: 607. [14] Yano K, Usuki A, Okada A. J Polym Sci Part A: Polym Chem 1997; 35: 2289. [15] Yeh J M, Liou S J, Lai C Y, Wu P C and Tsai T Y. Enhancement of Corrosion Protection Effect in Polyaniline via the Formation of Polyaniline-Clay Nanocomposite Materials. Chem Mater 2001; 13: 1131. [16] Lan T, Kaviratna P D, Pinnavaia T J. On the Nature of Polyimide-Clay Hybrid Composites. Chem Mater 1994; 6: 573. [17] Yeh J M, Chen C L, Chen Y C, Ma C Y, Lee K R, Wei Y and Li S. Enhancement of corrosion protection effect of poly(o-ethoxyaniline) via the formation of poly(o-ethoxyaniline)-clay nanocomposite materials. Polymer 2002; 43: 2729. [18] Yeh J M, Liou S J, Lin C Y, Cheng C Y, Chang Y W and Lee K R. Anticorrosively Enhanced PMMA-Clay Nanocomposite Materials with Quaternary Alkylphosphonium Salt as an Intercalating Agent. Chem Mater 2002; 14: 154. [19] Xie W, Gao Z, Pan W P, Hunter D, Singh A, Vaia R. Thermal Degradation Chemistry of Alkyl Quaternary Ammonium Montmorillonite. Chem Mater 2001; 13: 2979. [20] Messersmith P B, Giannelis E P. Synthesis and Characterization of Layered Silicate-Epoxy Nanocomposites. Chem Mater 1994; 6: 1719. [21] Kelly P, Akelah A, Qutubuddin S, Moet A. Reduction of residual stress in montmorillonite/epoxy compounds. J Mater Sci 1994; 29: 2274. [
摘要: 
摘要
皮膚受傷可造成身體功能失去平衡,臟器嚴重失調,甚至因而死亡。發炎、潰瘍、外傷、燒傷及手術等原因造成皮膚缺損與異常,不僅造成患者肉體痛苦,在治療的每一個階段也常造成患者的心靈創傷。創傷敷料於臨床上,可用來作為燒燙傷、褥瘡、糖尿病引起之皮膚潰爛的暫時性皮膚替代物,並且提供一個有助於傷口癒合之環境。創傷敷料屬於醫療器材,而醫療器材被評估為本國生技產業中最快能產業化及最適合發展者。理想之創傷敷料必須具備以下之特點:1可提供氣體交換之性質; 2抑制體液散失; 3防止細菌進入而引發感染; 4避免外來之污染; 5可促進傷口之癒合。更可因應不同之傷口會因其不同之癒合時期具有對創傷敷料功能之不同需求,例如創傷癒合之初期與後期對傷口表面之水分含量會有不同之需求。其中,聚胺基甲酸酯 (polyurethane; PU)材料因具氣體通透性、生物相容性高、表面疏水性、高機械強度、易加工、可供表面機能化改質等特點,極適合應用於創傷披覆材上,但欲達到燒燙傷及問題傷口治療用敷料的目的,仍必須先行改善增加材料之通透性及材料與傷口表面之易剝離性。本研究主要是利用奈米材料所提供之優越物理化學性質與生物相容性高或具特殊功能性之高分子材料製備具奈米尺度之高分子複合生醫材料作為高生物相容性及生物穩定性並可提供傷口潮濕性及易剝離之新型三層奈米複合傷口敷料。初期研究結果發現,利用γ-ray照射接枝技術成功將具高度吸水性之丙烯酸(Acrylic acid; AA)接枝聚合於聚醚型聚胺基甲酸酯 (poly(ether)urethane; PEU)表面,同時藉由丙烯酸之添加濃度可有效調控敷料之接枝量、親水性及吸水度。此外也成功利用化學法將幾丁聚醣/藻膠交聯固定於水膠層之表面。
本文亦探討不同種類奈米粒子(奈米金(nano-gold);奈米銀(nano-silver))及粒子濃度對醚型聚胺基甲酸酯之物理性質及生物穩定性之影響。物理性質測試結果得之添加適量之奈米金(43.5 ppm)或奈米銀(30.2 ppm)可顯著提高醚型聚胺基甲酸酯之熱穩定性、機械強度同時也於體內動物實驗中得知聚胺基甲酸酯中添加43.5 ppm之奈米金或30.2 ppm之奈米銀可增加聚胺基甲酸酯之生物穩定性並且可增加材料於體內之惰性同時減少體內之免疫反應進而提高生物相容性。因此適當之奈米粒子濃度為增加聚胺基甲酸酯物理性質及生物相容性之重要關鍵。之此外於水膠層之研究主要是藉由高親水性材料(acrylic acid(AA); itconic acid(IA))結合層狀之奈米蒙脫土(montmorillonite(MMT)clay)製備出高吸水性之PAA/clay及P(AA-co-IA)/clay奈米複合水膠。於XRD分析結果中發現奈米蒙脫土水膠中可達奈米級分散。傅立葉紅外線光譜分析壓縮測試及熱裂解分析得知奈米蒙脫土層狀表面會與高分子鏈形成鍵結並扮演交聯點之角色進而促進水膠之熱穩定性及機械強度,然而也由於交聯度增加而造成吸水性下降,因此本研究藉由具有雙親水基之IA進行共聚合,結果發現水膠以IA共聚合後可有效提升吸水性並且維持clay所提供之物理強度。故此藉由奈米特性製備之奈米複合材料於傷口敷料之應用是可被預期的。

Abstract
The skin is the largest organ of the body, ranging from 1.2 to 2.0 m2 in an adult. The skin consists of epidermis and dermis. The primary functions of the skin are to guard the body from harmful environment and to prevent the excessive loss of body fluid and electrolytes. The loss of skin in injuries breaks the integrity of this biological barrier. Therefore, early coverage of the freshly excised wounds is important in treatment. An ideal wound dressing should be non-antigenic, biocompatible, durable, adherent, readily available and inexpensive.
In this study, we have prepared a polyether-type waterborne polyurethane (PU) incorporated with different amounts of gold nanoparticles (17.4-65 ppm) or silver nanoparticles (30.2-113 ppm). The nanocomposite containing 43.5 ppm of gold or 30.2 ppm of silver was found to possess optimal thermal and mechanical properties, and much reduced foreign body reactions in subcutaneous rats and pig. The nanocomposite at 43.5 ppm of gold (“PU-Au 43.5 ppm”) and that at 30.2 ppm of silver (“PU-Ag 30.2 ppm”) exhibited greater thermal and mechanical properties and biostability as well as reduced foreign body reactions in rats and pigs. In particular, evidence of oxidative chain scission and crosslinking of the surface was present in the explanted specimens other than PU-Au 43.5 ppm and PU-Ag 30.2 ppm in pig model, shown by ATR-IR spectra. PAA/clay and P(AA-co-IA)/clay nanocomposite hydrogels were successfully synthesized. Some conclusions can be made from the preceding discussion as follows: the greater the content of the clay, the lower the swelling ratio of the gels. The XRD patterns showed that, in the hydrogels, the clay was exfoliated. The gel thermostability of the gels were enhanced by adding clay into the gel composition, attributed to the crosslinking formed between the gel matrix and clay dispersed phase through in situ polymerization. The possibility of applying of these nanocomposites for the development of wound dressing has been confirmed.
URI: http://hdl.handle.net/11455/3560
其他識別: U0005-0811200613175600
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.