Please use this identifier to cite or link to this item:
標題: Label-Free Nucleic Acid Sensors for Detection of Salmonella Based on Electrochemical Impedance Spectroscopy
作者: Wang, Yi-Ting
關鍵字: Salmonella;沙門氏桿菌;label-free;electrochemical impedence spectroscopy;cyclic voltammetry;nucleic acid sensor;electrode cleaning;免標定式;電阻抗分析法;循環伏安法;核酸感測器;電極清潔
出版社: 生物產業機電工程學系所
引用: 1. P. S. Mead, L. Stutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro , P. M. Griffin, R. V. Tauxe. Food-related illness and death in the United States. Emerging Infectious Diseases,1999, 5, 607-625. 2. I. Feder, J. C. Nietfeld, B. Kelly, M. D. Butine, P. McNamara, M. M. Chengappa, Evaluation of enrichment techniques for the isolation of Salmonella choleraesuis from swine feces, Journal of Microbiological Methods, 1998, 33,143-151. 3. A. A. Melloul, L. Hassani, Salmonella infection in children from the wastewaterspreading zone of Marrakesh city (Morocco). Journal of Applied Microbiology, 1999, 87, 536-539. 4. L. J. Yang, Y. B. Li, G. F. Erf, Interdigitated array microelectrode-based electrochemical impedance immunosensor for detection of escherichia coli O157:H7, Analytical Chemistry, 2004, 76, 1107-1113. 5. B. Q. Spring, R. M. Clegg, Fluorescence measurements of duplex DNA oligomers under conditions conducive for forming M-DNA (a metal-DNA complex), Journal of Physical Chemistry B, 2007, 111, 10040-10052. 6. Y. Liu, Y. Che, Y. Li, Rapid detection of Salmonella typhimurium using immunomagnetic separation and immuno-optical sensing method, Sensors and Actuators B, 2001, 72, 214-218. 7. 丁明哲,醫用微生物學,合記出版社,1996,312-319。 8. A. J. Baumler, B. M. Hargis, R. M. Tsolis, Tracing the origins of Salmonella outbreaks. Science, 2000, 287, 50-52. 9. Wikipedia, 10. L. L. Minor, Facultatively anaerobic gram-negative Rods, In. J. G. Holt , Bergey’s Manual of Systematic Bacteriology, 1st ed, Williams and Wilkins, Baltomore, USA, 1988, 427-458. 11. F. W. Brenner, R. G. Villar, F. J. Angulo, R. Tauxe, B. Swaminathan, Salmonella nomenclature, Journal of Clinical Microbiology, 2000, 38, 2465-2467. 12. M. Y. Popoff, J. Bockemühl, L. L. Gheesling, Supplement 2001 (no. 45) to the Kauffmann–White scheme, Research in Microbiology, 2003, 154, 173–174. 13. 江有恆,沙門氏菌PCR檢驗技術之開發與研究,國立中山大學生物科學研究所在職專班碩士論文,2003。 14. M. L. Hutchison, L. D. Walters, A. Moore, K. M. Crookes, S. M. Avery, Effect of length of time before incorporation on survival of pathogenic bacteria present in livestock wastes applied on agricultural soil. Applied and Environmental Microbiology, 2003, 70, 5111-5118. 15. J. T. Gray, P. J. Fedorka-Cray, T. J. Stabel, T. T. Karmer, Natural transmission of Salmonella choleraesuis in swine Appl, Applied and Environmental Microbiology, 1996, 62, 141–146. 16. E. K. Barbour, S. K. Hamadeh, N. E. Bejjani, O. M. Faroon, A. Eid, W. Sakr, M. Bouljihad, R. Spasojevic, B. Safieh-Garabedian, Immunopotentiation of a developed Salmonella enterica serotype enteritidis vaccine by thymulin and zinc in meat chicken breeders. Veterinary Research Communications, 2001, 25, 437-447. 17. T. M. Pan, C. S. Chiou, S. Y. Hsu, H. C. Huang, T. K. Wang, Food-borne disease outbreaks in Taiwan 1994, Journal of the Formosan Medical Association, 1996, 95, 417-420. 18. 行政院衛生署, 19. A. A. Salyers, D. D. Whitt, Bacterial Pathogenesis, A molecular approach, second edition, Washington, DC, American Society for Microbiology Press, 2001. 20. C. M. Alpuche-Aranda, E. P. Berthiaume, B. Mock, J. A. Swanson, S. I. Miller, Spacious phagosome formation within mouse macrophages correlates with Salmonella serotype pathogenicity and host susceptibility, Infection and Immunity, 1995, 63, 4456-4462. 21. D. G. Guiney, F. C. Fang, M. Krause, S. Libby, N. A. Buchmeier, J. Fierer, Biology and clinical significance of virulence plasmids in Salmonella Serovars, Clinical Infectious Diseases, 1995, 2, S146-S151. 22. CDC, 23. NCBI, 24. E. W. Bachtiar, K. C. Sheng, T. Fifis, A. Gamvrellis, M. Plebanski, P. J. Coloe, P. M Smooker, Delivery of a heterologous antigen by a registered Salmonella vaccine (STM1), FEMS Microbiology Letters, 2006, 227, 211 – 217. 25. R. I. Amann, W. Ludwig, K. H. Schleifer, Phylogenetic identification and in situ detection of individual microbial cells without cultivation, Microbiology and Molecular Biology Review, 1995, 59, 143-169 26. S. M. Gendel, Computational analysis of the specificity of 16S rRNA-derived signature sequences for identifying food-related microbes, Food Microbiology, 1996, 13, 1–15. 27. C. K. Lin, H. Y. Tsen, Use of two 16S DNA targeted oligonucleotides as PCR primers for the specific detection of Salmonella in foods, Journal of Applied Microbiology, 1996, 80, 659-666. 28. K. Rudi, S. L. Flateland, J. F. Hanssen, G. Bengtsson, H. Nissen, Development and evaluation of a 16S ribosomal DNA array-based approach for describing complex microbial communities in ready-to-eat vegetable salads packed in a modified atmosphere, Applied And Environmental Microbiology, 2002, 68, 1146-1156. 29. Y. C. Chiang, C. Y. Yang, C. Li, Y. C. Ho, C. K. Lin, H. Y. Tsen, Identification of Bacillus spp., Escherichia coli, Salmonella spp., Staphylococcus spp. and Vibrio spp. with 16S ribosomal DNA-based oligonucleotide array hybridization, International Journal of Food Microbiology, 2006, 107, 131 – 137. 30. 行政院環境保護署 31. A. R. Bennett, D. Greenwood, C. Tennant, J. G.. Banks, R. P. Betts, Rapid and definition of Salmonella in foods by PCR. Letters in Applied Microbiology, 1998, 26, 437-441. 32. T. Dalby, M. A. Strid, N. H. Beyer, J. Blom, K. Mølbak, K. A. Krogfelt, Rapid decay of Salmonella flagella antibodies during human gastroenteritis: A follow up study, Journal of Microbiological Methods, 2005, 62, 233– 243. 33. C. Ruan, L. Yangb, Y. Li, Rapid detection of viable Salmonella typhimurium in a selective medium by monitoring oxygen consumption with electrochemical cyclic voltammetry, Journal of Electroanalytical Chemistry, 2002, 519, 33–38. 34. H. Huang, M. M. Garcia, B. W. Brooks, K. Nielsen, S. P. Ng, Evaluation of culture enrichment procedures for use with Salmonella detection immunoassay, International Journal of Food Microbiology, 1999, 51, 85–94. 35. C. Desmonts, J. Minet, R. Colwell, M. Cormier, Fluorescent-antibody method useful for detecting viable but nonculturable Salmonella spp. in chlorinated wastewater, Applied And Environmental Microbiology, 1990, 56, 1448-1452. 36. B. S. W. Ho, T. Y. Tam, Rapid enumeration of Salmonella in environmental waters and wastewater, Water Research, 2000, 34, 2397-2399 . 37. S. Trevanich, S. Tiyapongpattana, T. Miyamoto, Application of an optimized 18-h method involving one step culturing and single primer-based PCR assay for detection of Salmonella spp. in foods, Food Control, 2010, 21, 593–598. 38. S. D. Oliveira, L. R. Santos, D. M. T. Schuch, A. B. Silva, C. T. P. Salle, C. W. Canal, Detection and identification of salmonellas from poultry-related samples by PCR, Veterinary Microbiology, 2002, 87, 25–35. 39. E. G. Endres, D. L. Cox, R. R. P. Singh, Colloquium: The quest for high-conductance DNA, Reviews of Modern Physics, 2004, 76, 195-217. 40. J. D. Watson, F. H. C. Crick, The structure of DNA, Cold Spring Harbor Symposia on Quantitative Biology, 1953, 18, 123-131. 41. E. B. Brauns, M. L. Madaras, R. S. Coleman, C. J. Murphy, M. A. Berg, Measurement of local DNA reorganization on the picosecond and nanosecond time scales, Journal of the American Chemical Society, 1999, 121, 11644-11649. 42. S. O. Kelley, R. E. Holmlin, E. D. A. Stemp, J. K. Barton, Photoinduced electron transfer in ethidium-modified DNA duplexes: Dependence on distance and base stacking, Journal of the American Chemical Society, 1997, 119, 9861-9870. 43. D. D. Eley, and D. I. Spivey, Semiconductivity of organic substances. Part 9.—Nucleic acid in the dry state. Transactions of the Faraday Societ, 1962, 58, 411-415. 44. C. R. Treadway, M. G. Hill, J. K. Barton, Charge transport through a molecular π-stack: double helical DNA, Chemical Physics, 2002, 281, 409-428. 45. P. Carpena, P. Bernaola-Galvan, P. Ch. Ivanov, H. E. Stanley, Metal–insulator transition in chains with correlated disorder, Nature, 2002, 418, 955-959 46. R. Rohs, H. Sklenar, R. Lavery, B. Ro1der, Methylene blue binding to DNA with alternating GC base sequence: a modeling study, Journal of the American Chemical Society, 2000, 122, 2860-2866. 47. R. Rohs, H. Sklenar, Methylene blue binding to DNA with alternating AT base sequence: minor groove binding is favored over intercalation, Journal of Biomolecular Structure & Dynamics, 2004, 21, 739-1102. 48. H. C. M. Yau, H. L. Chan, S. f. Sui, M. Yang, Integrity and redox properties of homogeneous and heterogeneous DNA films on gold surface probed by cyclic voltammetry, Thin Solid Films, 2002, 413, 218-223. 49. G. D. McEwen, F. Chen, A. Zhou, Immobilization, hybridization, and oxidation of synthetic DNA on gold surface: Electron transfer investigated by electrochemistry and scanning tunneling microscopy, Analytica Chimica Acta, 2009, 643, 26-37. 50. S. Wang, T. Peng, C. F. Yang, Electrochemical studies for the interaction of DNA with an irreversible redox compound - hoechst 33258, Electroanalysis, 2002, 14, 1648-1653. 51. P. S. Mead, L. Stutsker, V. Dietz, L. F. McCaig, J. S. Bresee, C. Shapiro , P. M. Griffin, R. V. Tauxe. Food-related illness and death in the United States. Emerging Infectious Diseases,1999, 5, 607-625. 52. S. F. Liu, Y. F. Li, J. R. Li, L. Jiang, Enhancement of DNA immobilization and hybridization on gold electrode modified by nanogold aggregates, Biosensors and Bioelectronics, 2005, 21, 789–795. 53. J. Kang, X. Li, G. Wu, Z. Wang, X. Lu, A new scheme of hybridization based on the Aunano-DNA modified glassy carbon electrode, Analytical Biochemistry, 2007, 364, 165–170. 54. X. H. Lin, P. Wu, W. Chen, Y. F. Zhang, X. H. Xia, Electrochemical DNA biosensor for the detection of short DNA species of Chronic Myelogenous Leukemia by using methylene blue, Talanta, 2007, 72, 468–471. 55. X. Li, Y. Zhou, T. C. Sutherland, B. Baker, J. S. Lee, H. B. Kraatz, Chip-based microelectrodes for detection of single-nucleotide mismatch, Analytical Chemistry, 2005, 77, 5766-5769 56. K. Ma, H. Zhou, J. Zoval, M. Madou, DNA hybridization detection by label free versus impedance amplifying label with impedance spectroscopy, Sensors and Actuators B, 2006, 114, 58–64. 57. K. Ma, H. Zhou, J. Zoval, M. Madou, Detection of DNA hybridization by adjacent impedance probing, Journal of the Association for Laboratory Automation, 2005, 10, 219-224 58. J. Yan, Label-free monitoring of site-specific DNA cleavage by EcoRI endonuclease using cyclic voltammetry and electrochemical impedance, Analytica Chimica Acta, 2009, 634, 44-48. 59. O. Y. F. Henry, A. Maliszewska, C. K. O’Sullivan, DNA surface nanopatterning by selective reductive desorption from polycrystalline gold electrode, Electrochemistry Communications, 2009, 11, 664-667. 60. T. H. Degefa, J. Kwak, Electrochemical impedance sensing of DNA at PNA self assembled monolayer, Journal of Electroanalytical Chemistry, 2008, 612, 37–41. 61. R. H. Hansen, J. V. Pascale, T. DE Benedictis, P. M. Rentzepis, Effect of atomic oxygen on polymers, Journal of polymer science : PAR A, 1965, 3, 2205-2214. 62. M. M. Walczak, D. D. Popenoe, R. S. Deinhammer, B. D. Lamp, C. Chung, M. D. Porter, Reductive desorption of alkanethiolate monolayers at gold: a measure of surface coverage, Langmuir,1991, 7, 2687-2693. 63. S. J. Ding, B. W. Chang, C. C. Wu, M. F. Lai, H. C. Chang, Impedance spectral studies of self-assembly of alkanethiols with different chain lengths using different immobilization strategies on Au electrodes, Analytica Chimica Acta, 2005, 554:43–51. 64. O. Y. F. Henry, A. Maliszewska, C. K. O’Sullivan, DNA surface nanopatterning by selective reductive desorption from polycrystalline gold electrode, Electrochemistry Communications, 2009, 11:664–667. 65. A. Kazuki, A. Takako, T. Noriko, A. Kayo, O. Takeyoshi, K. Fusao, T. Koichi, O. Takeo, Multiple voltammetric waves for reductive desorption of cysteine and 4-mercaptobenzoic acid monolayers self-assembled on gold substrates, Physical Chemistry Chemical Physics, 2003, 5, 3758–3761. 66. K. Arihara, T. Ariga, N. Takashima, K. Arihara, T. Okajima,F. Kitamura, K. Tokuda, T. Ohsaka, Multiple voltammetric waves for reductive desorption of cysteine and 4-mercaptobenzoic acid monolayers self-assembled on gold substrates, Physical Chemistry Chemical Physics, 2003, 5, 3758–3761. 67. E. D. Park, J. S. Lee, Effects of pretreatment conditions on CO oxidation over supported Au catalysts, Journal of Catalysis, 1999, 186, 1–11. 68. B. Sundaravel, K. Sekar, G. Kuri, P. V. Satyam, B. N. Dev, S. Bera, S. V. Narasimhan, P. Chakraborty, F. Caccavale, XPS and SIMS analysis of gold silicide grown on a bromine passivated Si(111) substrate, Applied Surface Science, 1999, 137, 103–112. 69. K. Juodkazis, J. Juodkazyte, V. Jasulaitiene, A. Lukinskas, B. Sˇebeka, XPS studies on the gold oxide surface layer formation, Electrochemistry Communications, 2000, 2, 503–507. 70. J. B. Dorota, B. N. Kolarz, W. Tylus, Sorption of aurocyanide and tetrachloroaurate onto resin with guanidine ligand—an XPS approach, Polymer, 2003, 44, 5797–5802. 71. I. G. Casella, M. Contursi, An electrochemical and XPS study of the electrodeposited binary Pd–Sn catalyst: The electroreduction of nitrate ions in acid medium, Journal of Electroanalytical Chemistry, 2006, 588, 147–154. 72. M. P. Casaletto, A. Longo, A. Martorana, A. Prestianni , A. M. Venezia, XPS study of supported gold catalysts: the role of Au0 and Au+ species as active sites, Surface and Interface Analysis, 2006, 38, 215-218. 73. I. G. Casella, M. Contursi, Rhodium-modified gold polycrystalline surface as anode material in alkaline medium: An electrochemical and XPS investigation, Journal of Electroanalytical Chemistry, 2007, 606, 24-32. 74. C. N. R. Rao, V. Vijayakrishnan, G. U. Kulkarni, M. K. Rajumon, A comparative study of the interaction of oxygen with clusters and single-crystal surfaces of nickel, Applied Surface Science, 1995, 84, 285-289. 75. M. Z. Atashbara, H. T. Sun, B. Gong, W. Wlodarski, R. Lamb, XPS study of Nb-doped oxygen sensing TiO2 thin films prepared by sol-gel method, Thin Solid Films, 1998, 326, 238–244. 76. W. Cao, O. K. Tan, J. S. Pan, W. Zhu, C. V. G. Reddy, XPS characterization of x_-Fe2O3–(1−x)ZrO2 for oxygen gas sensing application, Materials Chemistry and Physics, 2002, 75, 67–70. 77. I. G. Casella, T. R. I. Cataldi, A. Laurita, Electrochemical codeposition and spectroscopic characterization of Cu-Tl oxide films prepared in aqueous basic solutions, Journal of The Electrochemistry Society, 2004, 151, C392-C398. 78. I. G. Casella, M. R. GuascitoJournal, Anodic electrodeposition of conducting cobalt oxyhydroxide films on a gold surface. XPS study and electrochemical behaviour in neutral and alkaline solution, Electroanalytical Chemistry , 1999, 476, 54–63. 79. G. Dodero, L. D. Michieli, O. Cavalleria, R. Rolandi, L. Oliveri, A. Dacca` , R. Parodi, L-Cysteine chemisorption on gold: an XPS and STM study, A: Physicochemical and Engineering Aspects , 2000, 175, 121–128. 80. L. Chalumeau, M. Wery, H. F. Ayedi, M. M. Chabouni, C. Leclere, Development of a new electroplating solution for electrodeposition of Au–Co alloys, Surface & Coatings Technology, 2006, 201, 1363–1372. 81. A. Vallee, V. Humblot, C. Methivier, C. M. Pradier, Adsorption of a tripeptide, GSH, on Au(111) under UHV conditions; PM-RAIRS and low T-XPS characterization, Surface Science, 2008, 602, 2256–2263. 82. T. M. Herne, M. J. Tarlo, Characterization of DNA probes immobilized on gold surfaces, Journal of the American Chemical Society, 1997, 119, 8916-8920.
In Taiwan, Salmonella is one of common sitotoxism-inducing microbes, causing diseases such as septicemia and gastroenteritis. Therefore, it is a very important issue to quickly detect the existence of Salmonella. This study attempts to develop a chip-type nucleic acid sensor for the detection of Salmonella by using electrochemical impedence spectroscopy (EIS) and cyclic voltammetry (CV) to measure the variation of impedence and current when performing the DNA hybridization.
However, the initial cleanness states of chip-type electrodes would affect results such as the sensing reproducibility and the probe-DNA modification. Therefore, three kinds of cleaning procedures including (1) acetone, (2) oxygen plasma, and (3) piranha and aqua regia are compared for the electrode cleanness. The results show that the treatment of soaking in piranha for 2 min and in aqua regia for 1 min gives the best cleanness for the electrodes which obtains the smallest electron-transfer resistance and the best reproducibility. In addition, the effect of structures and charges of different buffering molecules on the sensing characteristics was compared. The results reveal that use of TES buffer can obtain the largest response of electron-transfer resistance to the MUA-modified or dsDNA- hybridized electrode-solution interfaces. The linear range and the detection limit for Target-DNA measured in TES buffer was 10-10~10-15 M and 10-15 M, respectively, which is better than the linear range (10-10~10-13 M) and the detection limit (10-13 M) measured in PBS buffer. Moreover, this nucleic acid sensor using EIS measurements can identity the signal difference between the single basepair mismatch and the 40-mer target-DNA and the complete complementary hybridization. The miniaturzied nucleic acid chip is beneficial for the integration of micro-fluidic system and has the advantages of portability and mass production.

沙門氏菌(Salmonella)為台灣常見導致食物性中毒病菌之一,易引發菌血症或急性腸胃炎,因此快速檢測出沙門氏菌是項重要議題。本研究利用電化學阻抗頻譜(electrochemical impedence spectroscopy, EIS)技術與循環伏安法(cyclic voltammetry, CV)量測DNA雜交前後電極介面電性響應的變化,開發一可檢測沙門氏菌特異性基因片斷的晶片式核酸感測晶片(chip)。
由於電極表面初始狀態的潔淨度,會影響電極的檢測再現性與DNA探針固定的結果,所以實驗初步先探討三種清潔方式(1) acetone, (2) oxygen plasma, (3) piranha /王水(aqua regia) 對電極表面清潔度的影響,結果顯示:piranha 2 min/aqua regia 1 min浸泡的清潔程序,可使電極表面具有最低的電子轉移阻抗與最佳的再現性。此外,也比較不同緩衝溶液分子的結構與電性對檢測特性的影響,結果顯示在相同MUA修飾或dsDNA雜交的介面,TES溶質分子可得最大的電子轉移阻抗量響應。在TES對target-DNA檢測的線性範圍為10-10~10-15 M,最低檢測極限可達10-15 M,皆較優於PBS中的線性範圍(10-10~10-13 M)與檢測極限值(10-13 M)。此外,此晶片藉由EIS量測可成功分辨出單鹼基配位錯誤和40 mer的target-DNA之檢測訊號與完全互補雜交後訊號間的差異。此微小化晶片的開發有利於微流體系統的整合並具有可攜式、大量生產等優勢。
其他識別: U0005-1908201014212400
Appears in Collections:生物產業機電工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.