Please use this identifier to cite or link to this item:
標題: Assessing Hydrogen Production Potential of Acid-Pretreated Sweet Potato Stillage with Fermentation and Microbially Assisted Electrolysis
作者: Chen, Jun-Wei
關鍵字: Dark fermentation;暗醱酵;Microbial electrolysis cell;acid pretreated;微生物電解電池;酸前處理
出版社: 生物產業機電工程學系所
引用: 1. 毛宗強、張勝雄、管鴻等。2008。氫能:21世紀的綠色能源。新文京開發出版社。 2. 曲新生、陳發林。2006。氫能技術The Hydrogen Technology。五南圖書出版股份有限公司。 3. 李國興、張嘉修、林屏杰、林秋裕、吳石乙、洪俊雄。2007。厭氧生物產氫之研發。化工54:69-94。 4. 李宏台、吳耿東、萬皓鵬、徐瑞鐘。2005。經濟前瞻 5:55-59。 5. 周柏伸。2006。利用酸前處理提高纖維酵素水解蔗渣效率之研究。國立台灣大學生物產業機電工程學研究所碩士論文。 6. 張嘉修。2009。生質氫能。科學發展月刊 433:32-35。 7. 張嘉修、李國興、林屏杰、吳石乙、林秋裕。2002。以環境生物技術生產清潔能源-氫氣。化工49:85-104 8. 簡宣裕、張明輝、劉禎祺。2007。木質纖維素產生能源之方法研究。綠色油田在農業永續發展扮演的角色演討會專刊。103-114 9. 行政院農糧署。2007。休耕田種植能源作物 開創綠色油田。 10. Call D., Logan B. E. 2008. Hydrogen production in a single chamber microbial electrolysis cell (MEC) lacking a membrane. Environ Sci. Technol. 42, 3401–3406. 11. Chang I. S., Moon H., Bretschger O., Jang J.K., Park H.I., Nealson K.H., Kim B.H. 2007. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. Microbiol Biotechnol 16:163–177. 12. Chen WH., Chen SY., Khanal SK., Sung S. 2006. Kinetic study of biological hydrogen production by anaerobic fermentation .Int J Hydrogen Energy.10:1063-1070. 13. Cheng S., Logan B.E. 2007. Sustainable and efficient biohydrogen production via electrohydrogenesis PNAS November 104:18871-18873 14. Chin Hsien-Long, Chen Zu-Shia, and Chou C. Perry. 2003. Fedbatch Operation Using Clostridium acetobutylicum Suspension Culture as Biocatalyst for Enhancing Hydrogen Production . Biotechnol.19:383-388. 15. Deretsky Zina. 2005. Microbial Electrolysis Cell. 16. Ditzig J., Liu H., Logan B.E. 2007. Production of hydrogen from domestic wastewater using a bioelectrochemically assisted microbial reactor (BEAMR). Int. J. Hydrogen Energy 32:2296–2304. 17. Esteghlalian A., Hashimoto A. G., Fenske J. J., Penner M. H. 1997. Modeling and optimization of the dilute-sulfuric-acid pretreatment of corn stover, poplar and switchgrass. Bioresource Technology 59:129-136. 18. Fan Y., Hu H., Liu H. 2007. Sustainable Power Generation in Microbial Fuel Cells Using Bicarbonate Buffer and Proton Transfer Mechanisms. Environ. Sci. Technol. 41:23:8154–8158. 19. Ghosh H.C. 1975. A new species of Manningia (Stomatopoda, Gonodactylidae) from the Andaman I. Crustacean 28(1): 33-36 20. Grant P. M.. 2003. Hydrogen lifts off-with a heavy load-The dream of clean, usable energy needs to reflect practical reality. Nature. 424:129-130. 21. Gross R., Leach M., Bauen A. 2003. Progress in renewable energy. Environ. Int., 29:105-122 22. Gorby Y.A., Yanina S, McLean J.S., Rosso K.M., Moyles D., Dohnalkova A., Beveridge T.J., Chang I.S., Kim B.H., Kim K.S.2006. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc Natl Acad Sci USA 103:11358–11363. 23. He Z., Huang Y., Manohar A.K., Mansfield F., 2008. Effect of electrolyte pH on the rate of the anodic and cathodic reactions in an air-cathode microbial fuel cell. bioelectrochemistry 74:78–82. 24. He Z., Shao H., and Angenent L.T. 2007. Increased power production from a sediment microbial fuel cell with a rotating cathode. Biosens. and Bioelectron.. 22(12): 3252-3255. 25. Hinman N. D., ScheelD.J., Riley C. J., Bergeron P. W., Walter P. J. 1992. Prelimihary estimate of the cost of ethanol production for SSF technology. Applied Biochemistry and Biotechnology 34:639-649. 26. Hu H., Fan Y., Liu H. 2008. Hydrogen production using single chamber membrane-free microbial electrolysis cells. Water Research 42:4172-4178. 27. Khanal SK., Chen WH., Li L., Sung S. 2004. Biological hydrogen production:effects of pH and intermediste products. Int J Hydrogen Energy.11:1123-1131. 28. Kim B.H., Kim H.J., Hyun M.S., Park D.H. 1999. Direct electrode reaction of Fe(III)-reducing bacterium Shewanella puterfactiens. J. Microbiol. Biotechnol.9:127-131. 29. Kinoshita K. 1992. Electrochemical Oxygen Technology. Wiely, New York. 30. Levina David B., Carerea Carlo R., Cicek Nazim, Richard Sparling. 2009. Challenges for biohydrogen production via direct lignocellulose fermentation. Hydrogen Energy 34: 7390–7403 31. Liu H., Grot Stephen, Logan Bruce E. 2005. Electrochemically Asisted Microbial Production of Hydrogen from Acetate. Environ. Sci. Technol.39:4317-4320. 32. Logan B. E. 2004a. Feature Article: Biologically extracting energy from wastewater: biohydrogen production and microbial fuel cells. Environ. Sci. Technol. 38, 160A-167A. 33. Logan B.E. 2004b. Extracting hydrogen and electricity from renewable resources. Environ Sci Technol 38:160A–167A 34. Logan B.E., Hamelers B., Rozendal R., Schroder U., Keller J., Freguia S., Aleterman P., Verstrace W., Rabeay K. 2006.Microbial fuel cells; methodology and technology. Environ. Sci. Technol.40(17):5181-5192 35. Logan B.E, Regan J. M. 2006. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol 14:512–518. 36. Logan B.E., Call D., Cheng S., Hamelers H.V., Sleutels T.H., Jeremiasse A.W., Rozendal R.A. 2008. Microbial Electrolysis Cells for High Yield Hydrogen Gas Production from Organic Matter.Environ Sci Technol. 42(23):8630-8640. 37. Manish S., Rangan Banerjee. 2007. Comparison of biohydrogen production process. Int J Hydrogen Energy 20:279-286. 38. Matthew D., Logan Bruce E. 2009. Electrolyte effects on hydrogen evolution and solution resistance in microbial electrolysis cells. Journal and Power Source 2:203-208. 39. McMillan, J. D. 1994. Enyzmatic Conversion of Biomass for Fuels Production, Journal and Power Source 5:294-324. 40. Min B., Kim J., S. E. Oh, J. M. Regan, and Logan. B. E. 2005. Electricity generation from swine wastewater using microbial fuel cells. Water Res. 39(20):4961-4968. 41. Miyake J., Masato M., Yasuo A. 1999. Biotechnological hydrogen production: research for efficient light energy conversion. J. Biotechnol. 70:89-101. 42. Niessen J., Schroder U., Harnish F., Scholz F. 2005. Lett Appl Microbiol l41:286–290. 43. Oh, S., and Logan B. E. 2005. Hydrogen and electricity production from a food processing wastewater using fermentation and microbial fuel cell technologies. Water Res. 39(19): 4673-4682. 44. Rabaey K., and Verstraete W. 2005. Microbial fuel cells: novel biotechnology for energy generation. Trends in Biotechnology 23: 291-298 45. Rozendal R.A., H.V.M., Euverink, G.J.W., Metz, S.J., Buisman, C.J.N. 2006.Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrogen Energy 31(12):1632-1640. 46. Rozendal R.A., Hubertus V.M.., Hamelers, R. J., Molenkamp C. J., Buisman C. J. 2007. Performance of single chamber biocatalyzed electrolysis with different types of ion exchange membranes. Water Research. 41:1984-1994. 47. Rozendal R. A., Jeremiasse A. W., Hamelers Hubertus V. M., and Buisman C. J. N. 2008. Hydrogen Production with a Microbial Biocathode. Environ. Sci. Technol., 422: 629-63 48. Salerno M.B., Park W., Zuo Yi, Logan B. E. 2006. Inhibition of biohydrogen production by ammonia. Water Research 40:1167-1172. 49. Schubert C. 2006. Microbiology: Batteries not included Circuits of slime. Nature 441:277–279. 50. Sivers M., Zacchi G., 1996. Ethanol from lignocellulosics: a review of the economy. Bioresour. Technol. 56, 131-140. 51. Sun Y., and Cheng J. 2002. Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource Technology. 83:1-11. 52. Thygesen A. F. W., Poulsen B., Angelidaki Min I., Thomsen A. B. 2008. The effect of different substrates and humic acid on power generation in microbial fuel cell operation. Bioresource Technology. 100(3): 1186-1191. 53. Victor A., Goltsov T., Nejat Vezitoglu. 2002. A step on the road to Hydrogen Civilization. Int J Hydrogen Energy 27:719-723 54. Wang S. D. 1980. Kinetics of rice hull hemicellulose hydrogen and potential of using its hydrolysate for acetic production. J.Chinese Agr. Soc. 18:66-79. 55. Woodward J., Orr M., Cordray M., Greenbaum K. 2000. Enzymatic production of biohydrogen. Nature 405:1014-1015. 56. Wu W. C., Chou C. Y. 2008. Stody of the bioethanol production: degradation of the lignocellulosic biomass wastes by using the dilute acids pretreatment. International Symposium on Machinery and Mechatronics for Agricultural and Biosystems Engineering 08:27-29. 57. Yokoi H., Ohkawara T., Hirose J., Hyashi S. and Takasaki Y. 1995 Characteristics of Hydrogen Production by Aciduric Enterbacter aerogenes strain HO-39. Bioenergy.80:571-574. 58. Zhang X., Cheng S., Huang X., Logan B.E. 2009. Improve performance of single-chamber microbial fuel cells through control of membrane deformation. Biosensors and Bioelectronics 2009:1-4.
本研究以迴流污泥粉末植種以暗醱酵及微生物電解電池評估甘藷酒渣經酸處理後的產氫潛能。暗醱酵部份以2%的酸液較3%的酸液在同樣的處理條件下有較大的產能,其中,鹽酸酸前處理其產氫量大於硫酸前處理,最大的產氫值為13.15 mmol H2/g COD。醱酵後的廢液以微生物電解電池持續產氫,在實驗過程中曾發現有產能變低的情形,推測應是交換膜變形所引起。在MEC反應中因產氫量不高,而使能量回收率低。結合暗醱酵與MEC得到的總產氫效率為0.11~0.68 mmole H2/g COD之間, COD移除在13~39%。

Since the 18th century industrial revolution, fossil fuels has become a major energy source to maintain human civilization, but it will cause environmental pollution and energy shortage problems. How to find a place of fossil fuels, and has features such as low pollution, and sustainability of alternative energy increasingly important. Biomass energy is to convert biomass into energy, a form of crop residues to produce hydrogen is a way of biomass energy applications, which can achieve the waste disposal and energy generation.
This study is to observe the hydrogen production potential of sweet potato lees after acid treatment. The assessing approach is to integrate dark fermentation and microbial electrolysis cell process. In the part of the fermentation, the hydrogen production potential of 2% acid concentration is higher than the 3% one; among which, the production of hydrogen which is dealt hydrochloric acid pretreated is higher than the one which is sulfuric acid pretreated, and the maximum hydrogen quantity is 13.15 mmole H2/g COD. Treating wastewater which is obtained after fermentation with microbial electrolysis cells and producing hydrogen. In microbial electrolysis cells, it has been found the decline of hydrogen production capacity during the experiment. the reason could be the exchange of membrane deformation. Because the MEC for hydrogen production reaction is not high, that thus results in lower energy recovery. Combining dark fermentation with MEC generates the total hydrogen production efficiency raging from 0.11 to 0.68 mmole H2/G COD, and COD removal rate ranges from 13 to 39 %.
其他識別: U0005-1908201018284900
Appears in Collections:生物產業機電工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.