Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3566
標題: 奈米級被擔持金屬氧化物觸媒之氧化反應研究
Oxidation of Propane over the Nanoscale Supported Metal Oxide Catalysts
作者: 潘宗冀
Pan, Tsung-Chi
關鍵字: nano-catalysts;奈米觸媒;metal oxide;propane oxidation reaction;methanol oxidation reaction;金屬氧化物;丙烷氧化脫氫反應;甲醇氧化反應
出版社: 化學工程學系所
引用: 1 王世敏、許祖勛及傅晶,“奈米材料製備技術”,化學工業出版社,北京,2001. 2 W. P. Halperin, Rev. of Modern Phys., 58, 532, 1986. 3 P. Ball and L. Garwin. “Science at the atomic scale.” Nature, 355, 761-766, 1992. 4 S. C. Davis and K. Klabund. “Unsupported small metal particles: Preparation, reactivity, and characterization.” Chem. Rev. 82, 153-208, 1982. 5 陳嘉銘,奈米鎂-鎳合金於加氫/脫氫反應的應用:PEG胺化反應及奈米碳管的成長,國立中興大學化學工程學系博士論文,2004. 6 林豐智及永山時男,日本化學會誌,6,1050,1984. 7 余衛國及錢捷,“奈米材料在催化加氫反應中的應用與研究進展” 浙江化工,34,27-30,2003. 8 R. Raja, T. Khimyak, J. M. Thomas, S. Hermans, and B. F. G. Johnson. “Single-step, highly active, and highly selective nanoparticle catalysts for the hydrogenation of key organic compounds.” Angew. Chem. Int. Ed., 40(24), 4638-4642, 2001. 9 R. Raja, G. Sankar, S. Hermans, D. S. Shephard, S. Bromley, J. M. Thomas, and B. F. G. Johnson. “Preparation and characterization of a highly active bimetallic (Pd-Ru) nanoparticle heterogeneous catalyst.” Chem. Commun., 16, 1571-1572, 1999. 10 J. P. Wiloxn, T. R. Thuston, J. E. Martin. “Application of metal and semiconductor nanoclusters as thermal and photo-catalysis.” 95, Atlanta Airport Marriott. Atlanta, Georgia, U.S.A., 143, 1995. 11 O. Alexeev and B. C. Gates. “Iridium clusters supported on γ-Al2O3: Structural characterization and catalysis of toluene hydrogenation.” J. Catal., 176(2), 310-320, 1998. 12 Y. J. Ying and A. Tschope. “Synthesis and characteristics of nonstoichiometric nanocrystalline cerium oxide-based catalysts.” Chem. Eng., 649(2), 225-237, 1996. 13 汪信及陸路德,“奈米金屬氧化物的製備及應用研究的若干進展”,無機化學學報,16(2),215-216,2000. 14 N. E. Bogdanchikova, S. Fuentes, M. Avalos-Borja, M.; M. H. Farías, A. Boronin, and G. Díaz. “Structural properties of Pd catalysts supported on La2O3 prepared by sol-gel method.” Appl. Catal. B, 17(3), 221-231, 1998. 15 B. C. Cates. “Supported metal clusters: Synthesis, structure and catalysis.” Chem. Rev., 95(3), 511-522, 1995. 16 S. N. Frank and A. J. Bard. “Heterogeneous photocatalytic oxidation of cyanide and sulfite in aqueous solutions at semiconductor powders.” J. Phys. Chem., 81(15), 1484-1488, 1977. 17 J. K. Leland and A. J. Bard. “Photochemistry of colloidal semiconducting iron oxide polymorphs.” J. Phys. Chem., 91(19), 5076-5083, 1987. 18 W. Albery and P. N. Bartlett, J. Electrochem. Soc., 131, 315, 1984. 19 G. W. Morey, Hydrothermal Synthesis, J. Am. Ceram. Soc., 36, 279, 1953. 20 D. J. Watson, C. A. Randall, R. E. Newnham, J. H. Adairm, “Hydrothermal Formation Diagram in the Lead Titanate System”, in Ceramic Powder Sci.Ⅱ, Am. Ceram. Soc. Inc., 154, 1988. 21 T. Sugimoto, “Preparation of Mono-Dispered Colloidal Particles”, Advances in Colliod and Interface Sci., 28, 1987. 22 A. Matthews, “The Crystallization of Anatase and Rutile from Amorphous Titanium Dioxide under Hydrothermal Conditions”, Am. Mineralogist, 61, 410, 1976. 23 W. J. Dawson, “Hydrothermal Synthesis of Advanced Ceremics Powders”, Ceram. Bull., 67, No. 10, 1673, 1988. 24 蘇品書,“超微粒子材料技術”,復漢出版社,台北,1989. 25 S. Wada, T. Suzuki, T. Noma, “Preparation of Barium Titanate Fine Particles by Hydrothermal Method and Their Characterization” J. Ceram. Soc. Jpn., 103, 1220, 1995. 26 A. Chittofratt and E.Matijevic, “Uniform Particlefs o Zinc-Oxide of Different Morphologies”, Colloids and Surf., 48, 65, 1990. 27 張立德、牟季美,“奈米材料和奈米結構”,滄海書局,2002. 28 R. R. Basca and J. P. Dougherty, “Hydrothermal Synthesis of Barium Titanate Thin Film on Titanium Metal Powder” J. Mater. Sci. Lett.,14, 600, 1995. 29 Y. C. Zhou and M. N. Rahaman, “Hydrothermal Synthesis and Sintering of Ultrafine BaTiO3 Powders”, J. Mater Res., Vol. 8, 1784, 1993. 30 Wu Mingmei, Xu Ruren, Shou Hua Feng., “The Influence of Anions on the Products of BaTiO3 Under Hydrothermal Conditions”,J. Mater. Sci., 31, 6201, 1996. 31 顏維廷,金屬矽酸鹽觸媒於丙烷氧化反應之應用,國立中興大學化學工程學系碩士論文,2001. 32 黃晁熙,不同過渡金屬添加於矽酸鹽觸媒之結構與氧化反應研究,國立中興大學化學工程學系碩士論文,2002. 33 L. M. Welch, L. J. Croce, H. F. Christmann, Hydrocarb. Process, 57 (11), 131, 1978. 34 F. Cafani and F. Trifiro, Appl. Catal. A, 88, 115, 1992. 35 E. A. Mamedov and V. Cortes Corberan, Appl. Catal. A., 1, 127, 1995. 36 Yongsheng Chen and Israel E. Wachs, “Tantalum oxide-supported metal oxide (Re2O7, CrO3, MoO3, WO3,V2O5, and Nb2O5) catalysts: synthesis, Raman characterization and chemically probed by methanol oxidation”, Journal of Catalysis, 46, 217, 2003. 37 Yongsheng Chen, Jose L. G. Fierro, Tsunehiro Tanaka, and Israel E. Wachs, “Supported Tantalum Oxide Catalysts: Synthesis, Physical Characterization, and Methanol Oxidation Chemical Probe Reaction”, J. Phys. Chem. B, 107, 5243, 2003. 38 Laura E. Briand, Andrew M. Hirt, and Israel E. Wachs, “Quantitative Determination of the Number of Surface Active Sites and the Turnover Frequencies for Methanol Oxidation over Metal Oxide Catalysts: Application to Bulk Metal Molybdates and Pure Metal Oxide Catalysts”, Journal of Catalysis, 202, 268, 2001. 39 Loyd J. Burcham,1 Mohit Badlani, and Israel E. Wachs, “The Origin of the Ligand Effect in Metal Oxide Catalysts: Novel Fixed-Bed in SituInfrared and Kinetic Studies during Methanol Oxidation”, Journal of Catalysis, 203, 104, 2001. 40 Loyd J. Burcham, Laura E. Briand, and Israel E. Wachs, “Quantification of Active Sites for the Determination of Methanol Oxidation Turn-over Frequencies Using Methanol Chemisorption and in Situ Infrared Techniques. 1. Supported Metal Oxide Catalysts” Langmuir, 17, 6164, 2001. 41 Loyd J. Burcham, Laura E. Briand, and Israel E. Wachs, “Quantification of Active Sites for the Determination of Methanol Oxidation Turn-over Frequencies Using Methanol Chemisorption and in Situ Infrared Techniques. 2. Bulk Metal Oxide Catalysts”, Langmuir, 17, 6175, 2001. 42 Li, J. L.; Dai, W. L.; Dong, Y.; Deng, J. F., “A New Silver-Containing Ceramics for Catalytic Oxidation of Methanol to Formaldehyde”, Mater. Lett., 44, 233, 2000. 43 Waterhouse, Geoffrey I. N.; Bowmaker, G. A.; Metson, J. B., “Mechanism and Active Sites for the Partial Oxidation of Methanol to Formadehyde over An Electrolytic Silver Catalyst”, Appl. Catal. A, 265, 85, 2004. 44 Waterhouse, Geoffrey I. N.; Bowmaker, G. A.; Metson, J. B., “Infuence of Catalyst Morphology on the Performance of Electrolytic Silver Catalysts for the Partial Oxidation of Methanol to Formadehyde”, Appl. Catal. A, 266, 257, 2004. 45 李秉傑;邱宏明;王奕凱合譯, “非均勻系催化原理與應用”,國立編譯館主編,渤海堂文化公司印,民國八十二年十月初版. 46 Nagy, A.; Mestl, G., “High Temperature Partial Oxidation Reations over Silver Catalysts”, Appl. Catal. A, 188, 337, 1999. 47 Matter, P. H.; Braden, D. J.; Ozkan, U. S., “Steam Reforming of Methanol to H2 over Nonreduced Zr-Containing CuO / ZnO Catalysts”, J. Catal., 223, 340, 2004. 48 Chan, S. H.; Wang, H. M., “Thermodynamic and Kinetic Modeling of an Autothermal Methanol Reformer”, J. Power Sources, 126, 8, 2004. 49 Kulprathipanja, A.; Falconer, J. L., “ Partial Oxidation of Methanol for Hydrogen Production Using ITO / Al2O3 Nanoparticle Catalysts”, Appl. Catal. A, 261, 77, 2004. 50 G. Ertl, H. Knözinger, J. Weitkamp, “ Handbook of HeterogeneousCatalysis ”, vol 3,VCH D-69451 Weinheim, 1508 , 1997. 51 陳力俊等,材料電子顯微鏡學,科儀叢書,1994 52 陳家全,李家維,楊瑞森,生物電子顯微鏡學,貴儀中心,1991 53 許樹恩、吳泰伯,X光繞射原理與材料結構分析 ,中國材料科學學會,1993
摘要: 
本研究中以水熱法合成出奈米級高比表面積的γ-Al2O3、TiO2、ZrO2、CeO2為觸媒擔體,分別擔持5% 氧化鉻、鉬、釩三種金屬氧化物為活性相。以TEM、XRD、BET、EDS對其做特性分析,並運用拉曼(Raman)光譜對奈米級被擔持氧化物觸媒其做表面結構進行分析,以瞭解表面金屬氧化物之動態變化。並進行丙烷氧化反應和甲醇氧化反應以氣相層析儀分析產物濃度,而得知此奈米級被擔持氧化物觸媒對氧化反應之活性及選擇性。
甲醇氧化反應研究結果顯示MoOx/Al2O3及VOx/Al2O3同時含有氧化還原基位和酸性基位於觸媒表面上,而其它系列觸媒皆只有氧化還原基位位於觸媒表面。丙烷氧化反應研究結果顯示反應主產物為丙烯,副產物為一氧化碳、二氧化碳、甲烷、乙烯、乙烷。歸納反應結果以氧化鉻為被擔持觸媒之轉化率最好,但其選擇率亦會隨著轉化率升高而下降。而氧化釩為被擔持觸媒雖然其轉化率不高但有著較佳的選擇率,其中奈米VOx/ZrO2在高溫(550℃)反應下仍然保持著良好的選擇率,顯示該觸媒對於丙烷氧化反應具有良好的催化能力。

Nanoscale supported metal oxide catalysts were synthesized by hydrothermal method. The supports are γ-Al2O3 TiO2, ZrO2 and CeO2, and 5% of V2O5, MoO3, and CrO3 were deposited on the previous oxide supports, respectively. The physical properties and structural information were characterized by TEM, BET, XRD, EDS and in situ Raman spectroscopy. Raman results confirm that the desired molecular arrangements of the active surface metal oxide phases have been achieved. The reactivity/selectivity properties of the nano catalysts are chemically probed with steady-state catalytic studies of propane oxidative dehydrogenation and methanol oxidation reactions.
The results of methanol oxidation reaction reveal that there are redox sites and acid sites on the surface of MoOx/Al2O3 and VOx/Al2O3, and only redox sites on the surface of the other catalysts. The results of propane oxidation reaction reveal that the nano supported chromia catalyst get possesses the highest activity, however, the selectivity decreases with increasing reaction temperature. The nano supported vanadia catalyst get possesses the lower activity and better selectivity. In addition, 5%VOx/ZrO2 remains the high selectivity under high reaction temperature of 550℃.
URI: http://hdl.handle.net/11455/3566
其他識別: U0005-1207200613270000
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.