Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3567
標題: 以電漿激發化學氣相沉積法製備二氧化鈦觸媒薄膜之甲醇光催化反應研究
Photocatalytic Degradation of Methanol gas with TiO2 thin films by Plasma Enhanced CVD
作者: 李凱博
Li, Kai-Po
關鍵字: Plasma-Enhanced Chemical Vapor Deposition;電漿激發化學氣相沉積;photocatalysis;methanol;光催化;甲醇
出版社: 化學工程學系所
引用: 1. A. Fujishima and K. Honda, “Electrochemical photolysis of water at a semiconductor electrode,” Nature, 1972. 238: p. 37-38. 2. 劉國棟, “VOC管制趨勢展望,” 工業防治污染, 1993. 48期: p. 15-31. 3. J. Marugan, D. Hufschmidt, M. Jose, L. Munoz, V. Selzer and D. Bahnemann, “Photonic efficiency for methanol photooxidation and hydroxyl radical generation on silica-supported TiO2 photocatalysts,” Applied Catalysis B: Environmental, 2006. 62(3-4): p. 201-207. 4. C. Lyons, C. Turchi and D. Gratson, “Solving widespread low-concentration VOC air pollution problem: gas-phase photocatalytic oxidation answers the needs of many small businesses,” The 88th Annual Meeting an Exhibition of Air & Waste Management Association, 1995. 95-TP60: p. 6. 5. H. Szymanowski, A. Sobczyk, M. Gazicki-Lipman, W. Jakubowski, L. Klimek, “Plasma enhanced CVD deposition of titanium oxide for biomedical applications,” Surface & Coatings Technology, 2005. 200(1-4): p. 1036-1040. 6. C. Guillard, D. Debayle, A. Gagnaire, H. Jaffrezic, J.M. Herrmann, “Physical properties and photocatalytic efficiencies of TiO2 films prepared by PECVD and solgel methods,” Materials Research Bulletin, 2004. 39(10): p. 1445-1458. 7. M.S.K. Khalil and I.M. Zaki, “Preparation and characterization of solgel derived mesoporous titanium spheroids,” Powder Technology, 2001. 120(3): p. 256-263. 8. T. Fuyuki and H. Matsunami, “Electronic Properties of Interface between Si and TiO2 Deposited at Very Low Temperature,” Janpanese Journal of Applied Physics, 1986. 25: p. 1288-1291. 9. K. S. Yeung and Y. W. Lan, “A simple chemical vapor deposition method for depoiting thin TiO2 films,” Thin Solid Films, 1983. 109: p. 169-178. 10. H.J. Frenck, “Deposition of TiO2 thin films by plasma enhanced decomposition of tetraiopropya titanate,” Thin Solid Films, 1991. 201: p. 327-335. 11. T.K. Won, “Compositional Analysis and Capacitance-Voltage Properties of TiO2 Films by Low Pressure Metal-Organic Chemival Vapor Deposition,” Journal of The Electrochemical Society, 1992. 139: p. 3284 -3288. 12. Z.X. Chen and A. Derking, “TiO2 Thin Films by Chemical Vapor Deposition: Control of the Deposition Process and Film Characterisation,” Journal of Materials Chemistry, 1993. 11: p. 1137 -1140. 13. J.P. Lu, “Solution precursor chemical vapor deposition of titanium oxide thin films,” Thin Solid Films, 1991. Letter204: p. L13-L17. 14. S. Schiller, “Reactive d.c. sputtering with the magnetron-plasmatron for tantalum pentoxide and titanium dioxide films,” Thin Solid Films, 1979. 63: p. 369-375. 15. K. Shingo, M. Kei, K. Takayuki, W. Yuji, Y. Shozo, K. Hiroshi, K. Yoshiya, “Mesoporous electrodes having tight agglomeration of single-phase anatase TiO2 nanocrystallites: Application to dye-sensitized solar cells,” Solar Energy Materials and Solar Cells, 2000. 61(4): p. 427-441. 16. K. Yokota, Y. Yano, K. Nakamura, M. Ohnishi, F. Miyashita, “Effects of oxygen ion beam application on crystalline structures of TiO2 films deposited on Si wafers by an ion beam assisted deposition,” Nuclear Inst. and Methods in Physics Research, B, 2006. 242(1-2): p. 393-395. 17. G.H. Takaoka, M. Kawashita, K. Omoto, T. Terada, “Photocatalytic properties of TiO2 films prepared by O2 cluster ion beam assisted deposition method,” Nuclear Inst. and Methods in Physics Research, B, 2005. 232(1-4): p. 200-205. 18. Z. Hu and C.H. Turner, “Initial Surface Reactions of TiO2 Atomic Layer Deposition onto SiO2 Surfaces: Density Functional Theory Calculations,” Journal of Physical Chemistry B, 2006. 110: p. 8337 -8347. 19. 林東峰, “以TTIP經由化學氣相沉積法沉積二氧化鈦薄膜之探討,” 碩士論文,國立清華大學化學工程研究所, 1997. 20. G.A. Battiston, R. Gerbasi, A. Gregori, M. Porchia, S. Cattarin, G.A. Rizzi, “PECVD of amorphous TiO2 thin films: effect of growth temperature and plasma gas composition,” Thin Solid Films, 2000. 371: p. 126-131. 21. P.R. McCurdy, L.J. Sturgess, K. Sandeep, E.R. Fisher, “Investigation of the PECVD TiO2 Si(100) interface,” Applied Surface Science, 2004. 233(1-4): p. 69-79. 22. M. Maeda and T. Watanabe, “Evaluation of photocatalytic properties of titanium oxide films prepared by plasma-enhanced chemical vapor deposition,” Thin Solid Films, 2005. 489(1-2): p. 320-324. 23. H.L.M. Chang, “Structure properties of epitaxial TiO2 films grown on sapphire (1120) by MOCVD,” Journal of Materials Research, 1992. 7: p. 2495-2506. 24. 李定粵, “觸媒的原理與應用,” 1999. 25. A.L. linsebigler, G. Lu, J.T. Yates, “Photocatalysis on TiO2 Surface: Principles, Mechanism, and Selected Results,” Chemical Reviews, 1995. 95: p. 735-758. 26. A. Fujishima, T.N. Rao and D.A. Tryk, “Titanium Dioxide Photocatalysis,” Journal of Photochemistry and Photobiology C: Photochemistry Review, 2000. 1: p. 1-21. 27. T. Sakta, “Heterogeneous Photocataltsis at Liquid-Solid Interfaces. in Photocatalysis-Fundamentals and Applications,” edited by N.Serpone and E. Pelizzetti, Pressed by John Wiley & Sons, Inc., 1989. 28. M.R. Hoffmann, S.T. Martin, W. Choi, D.W. Bahnemann, “environmental application of semiconductor photocatalysis,” Chemical Reviews, 1995. 20: p. 69-95. 29. S. Nakamura, N. Negishi, S. Kutsuna, T. Ihara, S. Sugihara, K. Takeuchi, “Role of oxygen vacancy in the plasma-treated TiO2 photocatalyst with visible light activity for NO removal,” Journal of Molecular Catalysis A: Chemical, 2000. 161: p. 205-212. 30. M.H. Suhail, G.M. Rao, S. Mohan, “dc reactive magnetro sputtering of titanium-struture and optical characterization of TiO2 films,” Journal of Applied Physics, 1992. 71: p. 1421 -1427. 31. Y. Takahashi, “Rutile Growth at the Surface of TiO2 Films Deposited by Vapor-phase Decomposition of Isopropyl Titanate,” Journal of American Chemical Society, 1985. 81: p. 3117-3125. 32. University of Colorado, “Mineral Structure,” (http://ruby.colorado.edu/~smyth/min/minerals.html). 33. 黃相舜, “電漿化學氣相沉積二氧化鈦薄膜知特性研究,” 民國八十九年六月(國立成功大學材料科學及工程學系碩士論文). 34. B.C. Wiley, “Glow Discharge Processes,” chapter 1-5, 1980: p. 1-175. 35. A. Grill, “Cold Plasma in Materials Fabrication,” IEEE Press, chapter 1-2, 1994: p. 1-45. 36. J.R. Roth, “Industrial plasma engineering,” Iop Publishing Ltd London, chapter 10, 1995: p. 352-390. 37. M.A. Lieberman, A.J. Lichtenberg, J. Wiley, “Principles of plasma Discharges and Materials Processing,” 1994. 38. M. Rossnagel, J.C. Jerome, D.W. William, “Handbook of plasma Processing Technology,” 1989. 39. 曾煥華, “電漿的世界,” 銀禾文化事業有公司,台北台灣, 1987. 第一章. 40. B.J. Kim, Y.C. Kim, J.J. Lee, “The effect of NH3 plasma pre-treatment on the adhesion property of (Ti1-xAlx)N coatings deposited by plasma-enhanced chemical vapor deposition,” Surface & Coatings Technology, 1999. 41. 林士淵, “電漿輔助化學氣相沉積二氧化矽薄膜之內應力分析,” 國立成功大學機械工程學系碩士論文, (民國八十九年六月). 42. 莊達人, “VLSI 製造技術,” 高立出版社, 1999. 43. K.H. Ahn, Y.B. Park, D.W. Park, “Kinetic and mechanistic study on the chemical vapor deposition of titanium dioxide thin films by in situ FT-IR using TTIP,” Surface & Coatings Technology, 2003. 171: p. 198-204. 44. S.S. Huang and J.S. Chen, “Comparison of the characteristics of TiO2 films prepared by low-pressure and plasma-enhanced chemical vapor deposition,” Journal of Materials Science: Materials in Electronics, 2002. 13: p. 77-81. 45. W.G. Lee, S.l. Woo, J.C. Kim, S.H. Choi, K.H. Oh, “Preparation and properties of amorphous TiO2 thin films by plasma enhanced chemical vapor deposition,” Thin Solid Films, 1994. 237(1-2): p. 105-111. 46. Y.H. Lee, “A role of energetic ions in RF-biased PECVD of TiO2,” Vacuum, 1999. 51(4): p. 503-509. 47. C. Martinet, V. Paillard, A. Gagnaire, J. Joseph, “Deposition of SiO2 and TiO2 thin films by plasma enhanced chemical vapor deposition for antireflection coating,” Journal of Non-Crystalline Solids, 1997. 216: p. 77-82. 48. G.K. Dalapati, S. Chatterjee, S.K. Samanta, C.K. Maiti, “Electrical characterization of low temperature deposited TiO2 films on strained-SiGe layers,” Applied Surface Science, 2003. 210: p. 249-254. 49. Y. Takagaki and K. H. Ploog, “Quantum interference effects in semiconductor uperconductor microjunctions,” Superlattices and Microstructures, 1999. 25(5-6): p. 659-667. 50. Q. Zhang, L.Gao and J. Guo, “Effects of Calcinations on the Photocatalytic Properties of Nanosized TiO2 Powders TiCl4 Hydrolysis,” Applied Catalysis B, 2000. 26: p. 207. 51. M. Anpo, T. Shima, S. Kodama, Y. KuboKawa, “Photocatalytic Hydrogenation of CH3COOH with H2O on Small-Particle TiO2: Size Quantization Effects and Reaction Intermediates,” Journal of Physical Chemistry, 1987. 91: p. 4305-4310. 52. Z. Zhang, C.C. Wang, R. Zakaria, J.Y. Ying, “Role of Particle Size in Nanocrystalline TiO2-base Photocatalysts,” Journal of Physical Chemistry B, 1998. 102: p. 10871. 53. S.B. Kim and S.C. Hong, “Kinetic study for photocatalytic degradation of volatile organic compounds in air using thin film TiO2 photocatalyst,” Applied Catalysis B: Environmental, 2002. 35: p. 305-315. 54. K. Demeestere, A.D. Visscher, J. Dewulf, M.V. Leeuwen, Herman Van Langenhove, “A new kinetic model for titanium dioxide mediated heterogeneous photocatalytic degradation of trichloroethylene in gas-phase,” Applied Catalysis B: Environmental, 2004. 54: p. 261-274. 55. M. Muruganandham and M. Swaminathan, “TiO2-UV photocatalytic oxidation of Reactive Yellow 14: Effect of operational parameters,” Journal of Hazardous Materials, 2006. 135(1-3): p. 78-86. 56. G. B. Raupp and C. T. Junio, “Photocatalytic Oxidation of Oxygenated Air Toxics,” Appl. Sur. Sci., 1993. 72: p. 321. 57. A. Selloni, A. Vittadini, M. Gratzel, “The Absorption of Small Molecules on the TiO2 Anatase (101) Surface by First-Principles Molecules Dynamics,” Surface Science, 1998. 402-404: p. 210-222. 58. C.S. Zalazar, C.A. Martin, A.E. Cassano, “Photocatalytic intrinsic reaction kinetics. II: Effects of oxygen concentration on the kinetics of the photocatalytic degradation of dichloroacetic acid,” Chemical Engineering Science, 2005. 60(15): p. 4311-4322. 59. A.A. Bonapasta and F. Filippone, “Photocatalytic reduction of oxygen molecules at the (1 0 0) TiO2 anatase surface,” Surface Science, 2005. 577(1): p. 59-68. 60. K. Okamoto, Y. Yamamoto, H. Tanaka, A. Itaya, “Heterogeneous Photocatalytic Decomposition of Phenol over Anatase Powder,” Bulletin of the Chemical Society of Japan, 1985. 58: p. 2015. 61. L.A. Dibble, “Gas-Solid Hetegogeneous Photocatalytic Oxidation of Trichloroethylene by Near Ultraviolet Illuminated Titanium Dioxide,” Ph.D. Thesis, Arizona State University, 1989. 62. G. Munuera, V.R. Arnau and A. Saucedo, “Photo-Adsorption and Photo-Desorption of Oxygen on Highly Hydroxylated TiO2 Surfaces, Part1-Role of Hydroxyl Groups in Photo-adsorption,” Journal of American Chemical Society, Faraday Trans I, 1979. 75: p. 736. 63. D.F. Ollis, E. Pelizzetti, N. Serpone, “Destruction of water contaminants,” Environmental Science & Technology, 1991. 25(9): p. 1523-1529. 64. T. Sauer, G. Cesconeto Neto, H.J. Jose, R.F.P.M. Moreira, “Kinetics of photocatalytic degradation of reactive dyes in a TiO2 slurry reactor,” Journal of Photochemistry and Photobiology A: Chemistry, 2002. 149(1-3): p. 147-154. 65. H.S. Fogler, “Elements of chemical reaction engineering,” 3rded. Prentice Hall, 1999. 66. Z. Tianyong, O. Toshiyuki, A. Akio, H. Hisao, Z. Jincai, S. Nick, “Photooxidative N-demethylation of methylene blue in aqueous TiO2 dispersions under UV irradiation,” Journal of Photochemistry and Photobiology A: Chemistry, 2001. 140(2): p. 163-172. 67. L.T. Hyoung, J.S. Mun, K.S. Done, G. Janos, “Photocatalytic decomposition of NO by TiO2 particles,” Journal of Photochemistry and Photobiology A: Chemistry, 2000. 134(3): p. 209-217. 68. 化學大辭典, 高立圖書公司. 69. 勞工安全衛生研究所, http://www.iosh.gov.tw/data/f11/n86.htm. 70. J. Liqiang, S. Xiaojun, C. Weimin, X. Zili, D. Yaoguo, F. Honggang, “The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity,” Journal of Physics and Chemistry of Solids, 2003. 64(4): p. 615-623. 71. T. Ohsaka, F. Izumi, Y. Fujiki, “Raman spectrum of anatase, TiO2,” Journal of Raman Spectroscopy, 1978. 7(6): p. 321 - 324. 72. Y. Lei, L.D. Zhang, J.C. Fan, “Fabrication, characterization and Raman study of TiO2 nanowire arrays prepared by anodic oxidative hydrolysis of TiCl3,” Chemical Physics Letters, 2001. 338(4-6): p. 231-236. 73. 謝永旭, “異相光催化分解水中單一取代基酚類化合物之反應研究,” 國立中興大學環境工程學系碩士論文, (民國八十四年五月).
摘要: 
本研究係以電漿激發化學氣相沉積 (PECVD) 法,利用氮氣輸送四異丙基鈦酸酯 (Ti (OC3H7) 4) 之蒸氣,以氧氣當電漿激發氣體產生反應,沉積二氧化鈦觸媒薄膜於矽基板上,並以此觸媒進行甲醇蒸氣之光催化反應研究其觸媒活性。製備二氧化鈦觸媒薄膜之控制因子包括基板溫度、氧氣流量、退火溫度及電漿射頻功率,經由 X 光粉末繞射儀 (XRD)、場發射掃描式電子顯微鏡 (FESEM)、化學分析電子能譜儀 (ESCA) 及三維奈米拉曼螢光顯微鏡 (Raman),分析觸媒薄膜表面特性,並以氣相層析儀 (GC) 偵測甲醇,探討不同製程條件之二氧化鈦觸媒薄膜對甲醇蒸氣轉化率之影響。
實驗中發現,以 Scherrer equation 估算二氧化鈦之顆粒粒徑介於 25.966 nm~33.329 nm 之間。適當的基板溫度、氧流量、退火溫度及射頻功率,有助於二氧化鈦銳鈦礦相的生成,並發現二氧化鈦觸媒薄膜在基板溫度 500℃、氧流量 70 sccm、退火溫度 700℃ 及射頻功率 100 W 時,得到最佳的 Anatase TiO2 觸媒薄膜。在甲醇初始濃度 144 ppmv,溼度 2.94 ppmv,反應溫度 75℃,不同光源 (紫外光 365 nm, 8 W、254 nm, 8 W及日光燈, 8 W)照射距離 1 cm下,以批次反應器進行甲醇蒸氣之光催化分解,進行 60 分鐘光照反應。在此三種光源照射下得到最大甲醇轉化率分別為 43.126%、47.438% 及 9.919%,且皆符合 L–H model 之一階動力模式。

This investigation was to prepare TiO2 catalyst films in the photocatalytic reaction of methanol vapor by Plasma-Enhanced Chemical Vapor Deposition (PECVD) method, using titanium (IV) isopropoxide (Ti (OC3H7) 4, TTIP) as a precursor. The vapor of TTIP was carried by nitrogen, and mixed with oxygen to form TiO2 catalyst films on Si wafer. The prepared parameters in this study included substrate temperatures, annealing temperatures, flowrate of oxygen and RF power. The films had been characterized by X-ray diffraction (XRD), Field Emission Scanning Electron Microscopy (FESEM), Electron Spectroscopy for chemical Analysis System (ESCA) and 3D Nanometer Scale Raman PL Microspectrometer (Raman). Moreover, the effect of prepared parameters to catalyst activity was established with the removal efficiency of methanol vapor.
The particle sizes of PECVD-TiO2 are between 25.966 nm and 33.329 nm by the calculation of Scherrer equation. Optimum Anatase-TiO2 by PECVD method were obtained under substrate temperatures 550℃, annealing temperatures 700℃, flowrate of oxygen 70 sccm and RF power 100 W. The photocatalytic activity by photocatalytic decomposition of methanol vapor over PECVD-TiO2 catalyst films was examined at a batch reactor under UV-light (with wavelength 365 nm and 254 nm) and a fluorescent light. From the results, the best conversion of methanol with UV-light (wavelength 365 nm and 254 nm) and a fluorescent light was 43.126%, 47.438% and 9.919%, respectively.
URI: http://hdl.handle.net/11455/3567
其他識別: U0005-1207200613274800
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.