Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3569
標題: 電遷移對共晶錫鉍銲點微結構與界面反應之影響
Electromigration study in the eutectic SnBi solder joint on the Ni/Au metallization
作者: 陳龍泰
Chen, Long-Tai
關鍵字: electromigration;電遷移
出版社: 化學工程學系所
引用: [1]H. B. Huntington, in “Diffusion in Solids:Recent Developments”, edited by A.S.Nowick and J. J. Burton, Academic Press, New York, p.303, 1975. [2]J. R. Black, IEEE Trans. on Electron Devices, ED-16, p.348, 1969. [3]J. R. Black, Proc. IEEE 57, p.1587, 1969. [4]J. A. Blech and E.S. Meieran, J. Appl. Phys., Vol.40, p.485, 1969. [5]W. J. Choi, E. C. C. Yeh, and K. N. Tu, J. Appl. Phys., Vol.18, p.2544, 2003. [6]H. Ye, C. Basaran, and D. C. Hopkins, IEEE Trans. on Components and Packaging Tech., Vol.26, p.673, 2003. [7]T. Y. Lee, K. N. Tu, S. M. Kuo, and D. R. Frear, J. Appl. Phys., Vol.89, 6, p.3189, 2001. [8]J. W. Nah, K. Paik, J. O. Suh, and K. N. Tu, J. Appl. Phys., Vol.94, 12, p.7560, 2003. [9]張淑如, “鉛對人體的危害”, 勞工安全衛生簡訊, 民國84 年, 第12期, p.17-18. [10]Lead-free Solder Project Final Report, NCMS Report 0401RE96, National Center for Manufacturing Science, Ann Arbor, Michigan, 1997. [11]V. I. Igoshev and J. I. Kleiman, J. Mater. Res., Vol. 29, p.244, 1999. [12]J. Glazer, J. Mater. Res., Vol.23, p.693, 1994. [13]H. B. Huntington and A. R. Grone, J. Phys. Chem. Solids., Vol.20, 76, 1961. [14]K. N. Tu, J. W. Mayer, and L. C. Feldman, Pearson Education, p.355, 1996. [15]P. S. Ho and T. Kwok, Reports on Progress in Physics, Vol.52, p.301, 1989. [16]C. K. Hu and J. M. E. Harper, Mater. Chem. Phys., Vol.52, p.5, 1998. [17]K. Zeng and K. N. Tu, Mater. Sci. & Eng. R, Vol.38, p.55, 2002. [18]C. Ryu, K.W. Kwon, and A. L. S. Loke, IEEE Trans.on Electron Device, Vol.46, p.1113, 1999. [19]M. Y. Hsieh and H. B. Huntington, J. Phys. Chem. Solids., Vol.39, p.861, 1978. [20]A. N. Campbell, R. E. Mikawa and D. B. Knorr, J. Electron. Mater., Vol.22, p.589, 1992. [21]K. N. Tu., J. Appl. Phys., Vol.94, 9, p.5451, 2003. [22]K. N. Tu., J. Appl. Phys., Vol.94, 1, 2003. [23]S. Brandenburg and S. Yeh, Proceedings of the Surface Mount Internatuonal Conference and Exposition, p.337, 1998. [24]C. Y. Liu, C. Chen, C. N. Liao, and K. N. Tu, Appl. Phys. Lett., Vol.75, p.58, 1999. [25]C. Y. Liu, C. Chen, and K. N. Tu, J. Appl. Phys., Vol.88, p.5703, 2000. [26]J. Y. Choi, S. S. Lee, and Y. C. Joo, Jpn. Appl. Phys., Vol.41, p.7487, 2002. [27]J. Y. Choi, S. S. Lee, J. M. Paik, and Y. C. Joo, IEEE Electronic Materials and Packaging, p.417, 2001. [28]Q. T. Huynh, C. Y. Liu, C. Chen, and K. N. Tu, J. Appl. Phys.,Vol.89, 4332, 2001. [29]H.Gan, W. J. Choi, G. Xu, and K. N. Tu, JOM, Vol.6,p.34,2002. [30]H.Gan and K.N.Tu, IEEE Electronic Component & Technology Conference, Proc,p.1206,2002. [31]T. Y. Lee, K. N. Tu, and D. R. Frear, J. Appl. Phys., Vol.90,p.4502,2001. [32]K. Nakagawa, S. Baba, M. Watanabe, H. Matsushima, K. Harada, E. Hayashi, Q. Wu, A. Maeda, M. Nakanishi, and N. Ueda, Proceedings of 51th Electronic Components and Technology Conference,p.971,2001. [33]Y. C. Hsu, T. L. Shao, C. J. Yang, and C. Chen, J. Electron. Mater., Vol.32, 11, p.1222, 2003. [34]H. Ye, C. Basaran, and D. C. Hopkins, Int. J. Solids Struct., Vol.40, p.7269, 2003. [35]J. W. Nah, J. H. Kim, H. M. Lee, and K. W. Paik, Acta Materialia, Vol.52, p.129, 2003. [36]Y. H. Liu and K. L. Lin, J. Mater. Res., Vol.20, 8, p.2184, 2005. [37]J. R. Lloyd and J. J. Clement, Thin Solid Films Vol.262, p.135, 1995. [38]W. C. Liu, S. W. Chen, and C. M. Chen, J. Electron. Mater., Vol.27, 1, p.5, 1998. [39]S. W. Chen, C. M. Chen, and W. C. Liu, J. Electron. Mater., Vol.27, 11, p.1193, 1998. [40]C. M. Chen, and S. W. Chen, J. Electron. Mater., Vol.28, 7, p.902, 1999. [41]C. M. Chen, and S. W. Chen, J. Electron. Mater., Vol.29, 10, p.1222, 2000. [42]C. M. Chen, and S. W. Chen, J. Appl. Phys., Vol.90, p.1208, 2001. [43]C. M. Chen, and S. W. Chen, Acta Materialia, Vol.50, 9, p.2461, 2002. [44]S. W. Chen, and C. M. Chen, JOM, Vol.55, p.62, 2003. [45]C. M. Chen, and S. W. Chen, J. Mater. Res., Vol.18, 6, p.1293, 2003. [46]M. Y. Du, C. M. Chen, and S. W. Chen, Mater. Chem. Phys., Vol.82, 3, p.818,2003. [47]H. Gan, G. Xu, and K. N. Tu, Proceedings of 52nd Electronic Components and Technology Conference New Orleans, LA , p.71, 2003. [48]H. Gan, and K. N. Tu, J. Appl. Phys.,Vol.97, 6, p.5514, 2005. [49]C. M. Lu, T. L. Shao, C. J. Yang, and C. Chen, J. Mater. Res., Vol.19, 8, p.2394, 2004. [50]Y. H. Chen, T. L. Shao, P. C. Liu, and C. Chen, J. Mater. Res., Vol.20, 9, p.2432,2005. [51]B. L.Young, and J. G. Duh, J. Electron. Mater., Vol.30, 7, 2001. [52]C. S. Huang, J. H. Yeh, B. L. Young, and J. G. Duh, J. Electron. Mater., Vol.31, 11,2002. [53]B. L. Young, J. G. Duh, and G. Y. Jang, J. Electron. Mater., Vol.32, 12, 2003. [54]羅金龍碩士論文,中央大學化工所,2001。 [55]M. G. Cho, K. W. Paik, H. M. Lee, S. W. Booh, and T. G. Kim, J. Electron. Mater., Vol.35, 1, 2006. [56]Q. L. Yang and J. K. Shang, J. Electron. Mater., Vol.34, 11, 2005. [57]W. J. Choi, E. C. C. Yeh, and K. N. Tu, J. Appl. Phys., Vol.94, p.5665, 2003. [58]E. C. C. Yeh, W. J. Choi, and K. N. Tu, P. Elenius, and H. Balkan, Appl. Phys. Lett., Vol.80, p.580, 2002. [59]T. Y. Hu, Y. H. Lin, and C. R. Kao, J. Mater. Res., Vol.18, p.2544, 2003. [60]U. B. Kang and Y. H. Kim, J. Electron. Mater., Vol.33, 1, 2004. [61]H. Ye, C. Basaran, and D. C. Hopkins, Int. J. Solids Struct., Vol.41, p.2743, 2004. [62]M. Shimoji, Liquid Metals : An Introduction to the Physics and Chemistry of Metals in the liquid state(London, Academic Press,1977) [63]J. Glazer, Int. Mater. Rev.,Vol. 40, p.65, 1995. [64]Binary alloy phase diagrams, ed. T. B. Massalski, (Materials Park, OH: ASM Intl., 1990.)
摘要: 
對於低溫無鉛銲料之發展,共晶Sn-58Bi合金是相當具有潛力的候選材料之一。本研究的目的在探討電遷移效應對共晶Sn-58Bi銲點微結構與界面反應之影響,實驗方法首先將共晶Sn-58Bi銲料回焊於金/鎳墊層上,接著施以6.5×10³ A/cm²之電流密度,在70°C之溫度下進行為期5至15天之反應,另外亦進行一組未通電之熱處理實驗作為對照。實驗結果顯示在陽極端觀察到Bi-rich 相之堆積層,且堆積層之厚度隨著反應時間之拉長而增加,顯示電遷移效應會造成Bi原子往陽極端移動。而藉由Bi-rich 層於陽極端的堆積速率,可以推算出共晶Sn-58Bi 銲料中Bi-rich 之Dz*值6.28×10¯¹° (cm²/s)。此外,亦觀察到通電10天後陰極和陽極端皆有二層介金屬化合物(Ni3Sn4 與Au-Ni-Bi-Sn)之生成,而通電15天後陰極端仍有二相Ni3Sn4 與Au-Ni-Bi-Sn之生成,然而陽極端卻只發現Ni3Sn4 一相,另外未通電之結果則顯示僅有Ni3Sn4 之生成。本研究也觀察到電遷移效應會加速銲料內Bi-rich 相之成長粗化。
本研究中我們也做了剛回焊後之試樣進行電遷移實驗,而電流密度為5×10³ A/cm²與120°C熱處理8天及15天後之試樣進行電遷移實驗,而電流密度為6.5×10³ A/cm²。在電流密度為5×10³ A/cm²,70°C之溫度下進行為期5至20天,並藉由Bi-rich 層於陽極端的堆積速率,進而推算出共晶Sn-58Bi 銲料中Bi-rich 之Dz*值1.74×10¯¹° (cm²/s)。在120°C熱處理8天後進行電遷移實驗,電流密度為6.5×10³ A/cm²,於70°C之溫度下進行為期5至12.5天,而計算出Bi-rich 之Dz*值3.22×10¯¹° (cm²/s)。在120°C熱處理15天後進行電遷移實驗,電流密度為6.5×10³ A/cm²,於70°C之溫度下進行為期5至12.5天,而計算出Bi-rich 之Dz*值1.83×10¯¹° (cm²/s)。

The eutectic Sn-58Bi solder alloy was one of the potential low melting temperature lead-free solders. This project was to investigate the electromigration effect on the microstructural evolution and interfacial reaction in the eutectic SnBi solder joint on the Ni/Au metallization with and without the current stressing of 6.510³ A/cm² at 70C for 5 to 15 days. Electromigration is found to have significant effects not only on the phase formation at the joint interface but also on the phase coarsening and mass accumulation of Bi in the solder alloy. In the solder joint without the current stressing, only a thin Ni3Sn4 phase was formed at the joint interface. For the solder joint with the current stressing, in addition to the Ni3Sn4 phase, a thick Au-Ni-Bi-Sn phase was formed at the joint interface after 10 days. However, the Au-Ni-Bi-Sn phase was not observed at the anode-side joint interface after 15 days of current stressing. The coarsening of the Bi-rich grain in the solder joint with the current stressing was much faster than that without the current stressing. The mass accumulation of Bi was observed at the anode side of the solder joint with the current stressing and the thickness of the Bi-rich accumulation layer increased with current stressing time. Based on the accumulation rate of the Bi-rich layer, the product of diffusivity and effective charge number of Bi in the eutectic SnBi solder was calculated to be 6.2810¹ cm²/s.
URI: http://hdl.handle.net/11455/3569
其他識別: U0005-1307200618195700
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.