Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3570
DC FieldValueLanguage
dc.contributor金惟國zh_TW
dc.contributor鄭如忠zh_TW
dc.contributor楊鴻銘zh_TW
dc.contributor鄭國忠zh_TW
dc.contributor.advisor鄭文桐zh_TW
dc.contributor.author李嘉慶zh_TW
dc.contributor.authorLee, Chia-Chingen_US
dc.contributor.other中興大學zh_TW
dc.date2008zh_TW
dc.date.accessioned2014-06-06T05:32:10Z-
dc.date.available2014-06-06T05:32:10Z-
dc.identifierU0005-1402200711462100zh_TW
dc.identifier.citation1.陳冠安,中興大學化學工程研究所碩士論文 (2003). 2.張峻憲,中興大學化學工程研究所碩士論文 (2004). 3.宋清潭,楊勝俊,高振育及邱志宏,”水性光阻劑之應用發展研 究”, Proceedings of the 1999 CIChe Annual Meeting AND Conferences, Specialty Chemicals Technology and Applications, P.109 (1999). 4.陳劉旺,”工業塗料與高分子化學”,高立圖書有限公司(1997) 5.Henk van Dijk, “The Chemistry and Application of Amino Crosslinking Agents or Aminoplasts”, John Wiley & Sons (1998). 6.J. P. Fouassier, “Photoinitiation, photopolymerization, and photocuring: fundamentals and application”, Hanser publishers, Munich Vienna New York (1995). 7.S. J. Jung, S. J. Lee, W.J. Cho, C. S. Ha, “Synthesis and properties of UX curable waterborne unsaturated polyester for wood coating”, J. Appl. Polym. Sci, 69, p.695 (1998). 8.J. Segurola, N. S. Allen, M. Edge, I. Roberts, “Photochemistry and photoinduced chemical crosslinking activity of acrylated pre-polymers by several commericial type I far UV photoinitiators”, Polymer Degradation and Stability, 65, p.153 (1999). 9.N. Arsu, R. S. Davidson, R. Holman, “Factors affecting the photoyellowing which occurs during the photoinitiated polymerization of acrylates”, J. of Photochemistry and Photobiology A: Chemistry, 87, p. 169 (1995). 10.J. Segurola, N. S. Allen, and M. Edge, A. Parrondo, and I. Roberts, “Photochemistry and photoinduced chemical crosslinking activity of several type II commercial photoinitiators in acrylated prepolymers”, J. of Photochemistry and Photobiology A: Chemistry, 122, p. 115 (1999). 11.J. Segurola, N.S.Allen, M. Edge, I. Roberts, Polymer Degradation Stability 65, P.153 (1999). 12.G. Bradley, R. S. Davidson, “Some aspects of the role of amines in the photoinitiated polymerisation of acrylates in the presence and absence of oxygen”, Recl. Trav. Chim. Pays-Bas, 114, p. 528 (1995). 13.王德海,“紫外光固化材料理論與應用”,科學出版社 (2001). 14.I. V. Khudyakov, J. C. Legg, M. B. Purvis, B. J. Overton, “Kinetic of photopolymerization of acrylates with functionality of 1-6”, Ind. Eng. Chem. Res, 38, p.3353 (1999). 15.G. Elsele, J. P. Fouassier, R. Reeb, “Kinetic of photocrosslinking reaction of a DCPA-EA matrix in presence of thiols and acrylate”, J. Polym. Sci.:Part A:Polym. Chemistry, 35, p. 2333 (1997). 16.C. Decker ,B. Elzaouk, “Laser-induced crosslinking polymerization of acrylic photoresist”, J.Appl. Polym. Sci, 65, p. 833 (1997). 17.C. G. Roffer, “Photopolymerization of surface coating”, John Wiley & Sons Inc., New York (1982). 18.T. C. Patton, “Paint Flow and Pigment Dispersion”, John Wiley and Sons Inc.(1979). 19.B. S. Chiou, A. K. Saad, “Real time FTIR and in situ rheological studies on the UV curing kinetic of thiol-ene system”, Macromolecules, 30, p. 7322 (1997). 20.M. J. Rosen, “Surfactants and Interfacial Phenomena”, John Wiley&Sons, Inc., New York (1978). 21.J. P. Fouassier, J. F. Rabek, “Radiation curing in polymer science and technology-Vol. I: fundamentals and method”, Elsevier Applied Sci.(1993). 22.S.S. Lee, H.Z.Y. Han, J.G. Helborn, J.A.E. Manson, Surface structure build-up in thermosetting powder coating during curing, Prog. Org. Coat. P.36 (1999). 23.C.C. Riccardi, H.E. Adabbo, R.J.J. Williams, Journal of Applied Polymer Science, 29, P.2481(1984). 24.N.A. St John, G.A. George, Progress in Polymer Science,19,5, P.755(1994). 25.S. B. Grassino, M. C. Strumia, J. Couve, M. J. M. Abadie, “Photoactive films obtained from methacrylo- urethanes tannic acid-based with potential usage as coating materials: analytic and kinetic studies”, Prog. in Org. Coat., 37, p. 39 (1999). 26.吳家全,中興大學化學工程研究所碩士論文 (2003). 27.A. T. Doornkamp, Y. Y. Tan, “Kinetic study of the UV-initiated polymerization of polyester urethane diacrylate by differential scanning calorimetry”, Polymer Communications, 31, p. 362 (1990). 28.G. R. Trypson, A. R. Shultz, “A calorimetric study of acrylate photo- polymerization”, J. Polym. Sci.Polym. Phys. Edn, 17, p. 2059 (1979). 29.C. Decker, “Photoinitiated crosslinking polymerization”, Prog. Polym. Sci., 21, p. 593 (1996). 30.J. E. Dietz, N. A. Peppas, “Reaction kinetics and chemical changes during polymerization of multifunctional (meth)acrylates for the production of highly crosslinked polymers used in information storage systems”, Polymer, 38, p. 3767 (1997). 31.陳力俊,"材料電子顯微鏡學",科儀叢書(1994). 32.G. Ordian, “Principles of Polymerization, third edition”, John Wiley & Sons Inc., New York (1991). 33.T. W. Graham, Graig B. Fryhle, Organic chemistry, p.900 (2000). 34.I. V. Khudyakov, J. C. Legg, M. B. Purvis, B. J. Overton, “Kinetic of photopolymerization of acrylates with functionality of 1-6”, Ind. Eng. Chem. Res, 38, p.3353(1999). 35.L. Linden, J. F. Rabek, “Modelling the Kinetice of Photoinitiated Polymerization of Di(meth)acrylates”, Polymer International, 42, p. 179 (1997). 36.R. Chandra, K. Soni, “Studies on Kinetic of Bulk Polymerization of Divinyl Ester by Radiical-Initiated Thermal and Photopolymerization”, Polymer International,31, p. 239 (1993). 37.D. Marquardt, ”An algorithm for least-squares estimation of nonlinear parameters”, SIAM J. Appl.Math.,Vol. 11, pp.431 (1963). 38.鄭國忠,台灣大學化學工程研究所博士論文(1994).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3570-
dc.description.abstract目前平面顯示器用彩色濾光片的光阻劑大多是使用有機溶劑作為稀釋 劑,但是有機溶劑具有揮發性並有毒性,故常造成工安上的危險以及 對於環境的污染。所以,世界各國紛紛訂立嚴格的環保法規,以減少 有機溶劑對環境的衝擊。 如果將光阻液成份中的有機溶劑用水取代,則可以解決有機揮發物的 問題。由於水的揮發性低,對人體無毒,且成本低,若能成功用水來 取代有機溶劑,並且不減原有的光阻效能,將會是項重大的突破。 本論文旨在製備彩色化水性負型光阻及其光聚合反應動力學的研究。 首先,將具有多酸基的環氧-壓克力樹脂,反應性稀釋單體TMPTA,光 起始劑Irgacure 651,及多元醇交聯劑poly-thiol混均後,掺入含藍 色有機顏料(Blue15:6)與綠色有機顏料(Green36)的分散液,並緩緩 滴入去離子水轉水性化,製成彩色化水性負型光阻液。 利用DPC來分析彩色化水性負型光阻的光聚合反應性,得到不同有機 顏料粒子濃度,不同顏料粒徑,光起始劑添加量,多元硫醇添加量, 及三乙基胺添加量的轉化率分佈,並探討各項變因的影響。 最後,將上述分析所得到的結果與自催化動力學模式結合,建立彩色 化水性負型光阻的反應動力學模式,並透過彩色化水性負型光阻的微 影製程評估反應速率常數和顯影圖案解析度的相關性。 從上述實驗結果,本研究獲得以下重要結論: (1)過量的triethylamine會導致彩色化水性光阻的反應性下降。 (2)從自催化模式與微影測試得知,反應速率常數愈大,顯影過程中 的膜厚損失愈低。 (3)添加硫醇可以克服有機顏料粒子在彩色化水性光阻中的遮蔽效 應,以增加其光聚合反應速率。 以上研究成果可作為未來環保型彩色濾光片材料製作之參考,以實現 綠色製程在光電產業上的應用。zh_TW
dc.description.abstractThe photo-resist for color filter in liquid crystal display (LCD) was generally diluted by the solvents that has volatility and toxicity problems causing the industrial pollution. Therefore, many countries are starting to legislate against the environmental impact induced by organic solvent; and it's an important fruition to reduce organic solvent in photo-resist by water but no affect the efficiency of photo-resist. The aim of this research is to prepare color waterborne photo-resist containing multi-acid epoxy acrylate, reactive diluents monomer, photo-initiator, organic pigment paste, and polythiol to study the reactivity of photo- polymerization of color waterborne resist through the analysis of DPC The auto-catalytic reaction model was then employed to establish the kinetics of color waterborne negative-work photo-resist as functions of organic particle size and content as well as the amounts of triethylamine, polythiol, and photo-initiator for the relationship of the photo- lithographic process with the rate constant and reaction order. In conclusion, the key results in this work can be addressed as follows: (1)The addition of excessive triethylamine would reduce the photo-reactivity of color waterborne photo- resists. (2)increasing the rate constant of photo-polymerization can reduce the film loss of color waterborne resist during development. (3)The addition of poly-thiol would overcome the screen effect caused by pigment, and increase the photo-reactivity of color waterborne photo-resists. Based on the above results, the ideal of green process on flat plate display industry would be realized.en_US
dc.description.tableofcontents中文摘要---------- ------------------------------------I 英文摘要----------------------------------------------III 致謝-------------- ------------------------------------IV 目錄 -------------------------------------------------V 表目錄 -----------------------------------------------VIII 圖目錄 -----------------------------------------------IX 第一章 緒論 ------------------------------------------1 1-1 前言 -------------------------------------------1 1-2 研究項目----------------------------------------1 1-3 研究方法----------------------------------------2 1-4 本論文架構--------------------------------------4 第二章 文獻回顧與研究動機 ----------------------------5 2-1 高分子水性化 -----------------------------------5 2-2 光起始劑----------------------------------------10 2-3 反應性稀釋單體----------------------------------13 2-4硫醇對於轉化率的影響-----------------------------15 2-5 有機顏料的分散----------------------------------16 2-6 光聚合反應動力學--------------------------------17 2-6-1 反應性分析------------------------------------17 2-6-2 高分子光聚合反應的動力學模式------------------18 2-7 研究動機----------------------------------------19 第三章 彩色化水性光阻之光聚合反應性探討---------------20 3-1 本文摘要----------------------------------------20 3-2 實驗材料與儀器設備------------------------------21 3-2-1 實驗材料--------------------------------------21 3-2-2 實驗儀器與設備--------------------------------25 3-3 實驗方法----------------------------------------26 3-3-1 材料製備--------------------------------------26 3-3-2 儀器原理與分析--------------------------------28 3-4 結果與討論--------------------------------------38 3-4-1不同有機粒子粒徑大小對光聚合反應的影響---------38 3-4-2不同含量的有機粒子對於光聚合反應的影響---------43 3-4-3不同光起始劑含量對光聚合反應的影響-------------45 3-4-4不同thiol含量對光聚合反應的影響----------------47 3-4-5不同的Amine含量對光聚合反應的影響--------------49 3-5 本章結論----------------------------------------52 第四章 彩色化水性光阻動力學模式建立-------------------53 4-1 本章摘要----------------------------------------53 4-2 實驗方法----------------------------------------54 4-2-1彩色水性光阻之反應動力學模式的建立-------------54 4-2-2 微影測試的步驟--------------------------------56 4-2-3實驗儀器與設備---------------------------------56 4-3 結果與討論--------------------------------------57 4-3-1不同光強度與自催化反應動力學參數的關係---------57 4-3-2不同有機粒子添加量與光聚合反應動力學參數的關係-58 4-3-3硫醇添加量與光聚合反應動力學參數的關係---------59 4-3-4光起始劑添加量與光聚合反應動力學參數的關係-----60 4-4 實驗值與理論值的比較----------------------------61 4-5 微影製程與彩色化水性光阻反應機制的關係探討------66 4-6 本章結論----------------------------------------69 第五章 綜合結論與未來延續方向-------------------------70 5-1 綜合結論----------------------------------------70 5-2 未來延續方向------------------------------------71 參考文獻----------------------------------------------72 附錄--------------------------------------------------75zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-1402200711462100en_US
dc.subjectwaterborne photo-resisten_US
dc.subject水性光阻zh_TW
dc.subjectkineticsen_US
dc.subjectphoto curingen_US
dc.subject動力學zh_TW
dc.subject光聚合反應zh_TW
dc.title水性彩色化負型光阻之反應動力學研究zh_TW
dc.titleThe study on the kinetics of color waterborne photo-resisten_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:化學工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.