Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3577
標題: Polydimethylsiloxane之表面改質及在免疫分析上之應用
Modification of polydimethylsiloxane and its application in immunoassay.
作者: 陳俊瑩
Chen, Jung Ying
關鍵字: microfluidic chip;微流體晶片;PDMS (polydimethylsiloxane);surface modification;protein immobilization;PDMS (polydimethylsiloxane);表面改質;蛋白質固定化
出版社: 化學工程學系所
引用: 1. 賴信方, 染色介質標誌抗體於免疫層析檢測上之應用. 國立中興大學化學工程研究所碩士論文, 2003. 2. 李承璋, 開發電活性物於免疫電化學之檢測上. 國立中興大學化學工程學系碩士論文, 2004. 3. Jorgenson, J.W. and Lukacs, K.D., Zone electrophoresis in open-tubular glass capillaries. Analytic. Chemistry.,, 1981. 53: p. 1298-1302. 4. Liang, Z., Chiem, N., Ocvirk, G., Tang, T., Fluri, K. and Harrison, D.J., Microfabrication of a Planar Absorbance and Fluorescence Cell for Integrated Capillary Electrophoresis Devices. Analytic. Chemistry., 1996. 68: p. 1040-1046. 5. 高逢時, 黑夜的精靈:螢光體. 科學發展, 2003. 367: p. 64-69. 6. Probes, M., Introduction to Fluorescence Techniques. Molecular Probes, 2003. 7. Skoog, H., Nieman, Principles of Instrumental analysis. 1998: p. 361-364. 8. 中部微奈米光機電系統技術研討會. 2004. 9. 邱爾德、李政育、黃鈞正, 生物晶片關聯光電系統偵測. 科學發展月刊. 717. 10. 王少君, 微流體晶片與蛋白質晶片. 科學發展, 2003. 11. 李國賓, 下一波之生物晶片-微流體生醫晶片之應用及研發. 12. 鄒國鳳, 廖寶琦,許惠婷,林中源,陳淑惠,陳邦維, 微型蛋白質分析系統. 13. 陳邦維、李國賓、林中源、陳淑慧、宋旺洲、廖寶琦, 微流體晶片連結質譜儀偵測在蛋白質分析上的應用. 14. Gwo-Bin Lee ,., Lung-Ming Fu, Shu-Hui Chen, Integrated optical-fiber capillary electrophoresis microchips with novel spin-on-glass surface modification. Biosensors and Bioelectronics, 2004. 20: p. 83-90. 15. R. Scott Martin, A.J.G., and Susan M. Lunte, Dual-Electrode Electrochemical Detection for Poly(dimethylsiloxane)-Fabricated Capillary Electrophoresis Microchips. Analytic. Chemistry., 2000. 72: p. 3196-3202. 16. Joseph C. Fanguy, Justin M. Bledsoe, and Charles S. Henry, Dynamic Coating Using Polyelectrolyte Multilayers for Chemical Control of Electroosmotic Flow in Capillary Electrophoresis Microchips. Analytic. Chemistry, 2000. 72: p. 5939-5944. 17. A. Ranjit Prakash , S.A., V. Sieben , P. Pilarski, L.M. Pilarski , C.J. Backhouse ,. Small volume PCR in PDMS biochips with integrated fluid control and vapour barrier. Sensors and Actuators B, 2006. 113: p. 398-409. 18. Norbert Gottschlich, C.T.C., Timothy E. McKnight, Stephen C. Jacobson, J. Michael Ramsey, Integrated microchip-device for the digestion, separation and postcolumn labeling of proteins and peptides. Journal of Chromatography B, 2000. 745: p. 243-349. 19. E. L Hostis, P.E.M., G.C. Fiaccabrino, D.J. Strike, N.F. de Rooij, M. Koudelka-Hep, Microreactor and electrochemical detectors fabricated using Si and EPON SU-8. Sensors and Actuators B, 2000. 64: p. 156-162. 20. Yuki Tanaka , M.N.S., Akihide Hibara , Manabu Tokeshi , Takehiko Kitamori, Non-contact photothermal control of enzyme reactions on a microchip by using a compact diode laser. Journal of Chromatography A,, 2000. 894: p. 45-51. 21. Zhang-Run Xu, Z.-L.F., Composite poly(dimethylsiloxane)/glass microfluidic system with an immobilized enzymatic particle-bed reactor and sequential sample injection for chemiluminescence determinations. Analytica Chimica Acta, 2004. 507: p. 129-135. 22. 何蒼峰, 矽利康高分子教材. 私立萬能技術學院, 九十年. 23. Vincent Linder, E.V., Wolfgang Thormann,Nico F. de Rooij,and Hans Sigrist, Surface Biopassivation of Replicated Poly(dimethylsiloxane) Microfluidic Channels and Application to Heterogeneous Immunoreaction with On-Chip Fluorescence Detection. Analytic. Chemistry, 2002. 73: p. 4181-4189. 24. Jessamine Ng Nee, C.P., George M. Whitesides, Solvent compatibility of Poly(dimethylsiloxane)-based Microfluidic Devices. Analytic. Chemistry., 2003. 75: p. 6544-6554. 25. Jae Hyung Park, K.D.P., You Han Bae, PDMS-based polyurethanes with MPEG grafts: synthesis, characterization and platelet adhesion study. Biomaterials, 1999. 20: p. 943-953. 26. Denise P. Queiroz, M.N.d.P., Structural characteristics and gas permeation properties of polydimethylsiloxane/poly(propylene oxide) urethane/urea bi-soft segment membranes. Polymer, 2005. 46: p. 2346-2353. 27. James H. Silver, J.-C.L., Florencia Lim, Vassiliki A. Tegoulia, and S.L.C. Manoj K. Chaudhury, Surface properties and hemocompatibility of alkyl-siloxane monolayers supported on silicone rubber: effect of alkyl chain length and ionic functionality. Biomaterials, 1999. 20: p. 1533-1543. 28. Norton, A.A.V.a.M.L., DNA Attachment Chemistry at the Flexible Silicone Elastomer Surface: Toward Disposable Microarrays. Langmuir, 2004. 20: p. 11100-11107. 29. Daojun Liu, R.K.P., Li Sun, and Richard M. Crooks, Immobilization of DNA onto Poly(dimethylsiloxane) Surfaces and Application to a Microelectrochemical Enzyme-Amplified DNA Hybridization Assay. Langmuir, 2004. 20: p. 5905-5910. 30. Sebastian A. Lange, V.B., Dieter P. Kern,J. K. Heinrich Ho1 rber, and Andre Bernard,, Microcontact Printing of DNA Molecules. Analytic. Chemistry., 2004. 76: p. 1641-1647. 31. T.G. Vladkova, I.L. Keranov, P.D. Dine., S.Y. Youroukov, and N.K.. I.A. Avramova, G.P. Altankov, Plasma based Ar+ beam assisted poly(dimethylsiloxane) surface modi.cation. Nuclear Instruments and Methods in Physics Research B, 2005. 236: p. 552-562. 32. Bernhard Schnyder , Thomas Lippert, R u, et al., UV-irradiation induced modifcation of PDMS investigated by XPS and spectroscopic ellipsometry. Surface Science, 2003. 532-535: p.1067-1071. 33. Bin Wang, L.C., Zamin Abdulali-Kanji, J. Hugh Horton, and Richard D. Oleschuk, Aging Effects on Oxidized and Amine-Modified Poly(dimethylsiloxane) Surfaces Studied with Chemical Force Titrations: Effects on Electroosmotic Flow Rate in Microfluidic Channels. Langmuir, 2003. 19: p. 9792-9798. 1067-1071. 34. Wayner, G.A.D.-Q.a.D.D.M., A Simple Approach to Micropatterning and Surface Modification of Poly(dimethylsiloxane). Langmuir, 2004. 20: p. 9607-9611. 35. Kirill Efimenko, W.E.W., E and Jan Genzer., Surface Modification of Sylgard-184 Poly(dimethyl siloxane) Networks by Ultraviolet and Ultraviolet/Ozone Treatment. Journal of Colloid and Interface Science, 2002. 254: p. 306-315. 36. Yevgeny Berdichevsky , Julia Khandurina , Andras Guttman , Y.-H. Loa, UV/ozone modification of poly(dimethylsiloxane) microfluidic channels. Sensor. Actuators, B, 2004. 97: p. 402~408. 37. Attila Ol, Henrik Hillborg, G. Julius Vancso, Hydrophobic recovery of UV/ozone treated poly(dimethylsiloxane): adhesion studies by contact mechanics and mechanism of surface modification. Applied Surface Science, 2005. 239: p. 410-423 38. Shuwen Hu, X.R., Mark Bachman, Christopher E. Sims, G.P. Li,and and N. Allbritton|, Surface Modification of Poly(dimethylsiloxane) Microfluidic Devices by Ultraviolet Polymer Grafting. Analytic. Chemistry., 2002. 74: p. 4117-4123. 39. Shuwen Hu Xueqin Ren, M.B., Christopher E. Sims, G. P. Li,and Nancy L. Allbritton, Tailoring the Surface Properties of Poly(dimethylsiloxane) Microfluidic Devices. Langmuir, 2004. 20: p. 5569-5574. 40. Shuwen Hu, X.R., Mark Bachman, Christopher E. Sims, G. P. Li,and and N.L. Allbritton, Surface-Directed, Graft Polymerization within Microfluidic Channels. Analytic. Chemistry, 2004. 76: p. 1865-1870. 41. Yuli Wang, H.-H.L., Mark Bachman, Christopher E. Sims, G. P. Li, and and N.L. Allbritton, Covalent Micropatterning of Poly(dimethylsiloxane) by Photografting through a Mask. Analytic. Chemistry, 2005. 77: p. 7539-7546. 42. M.T. Khorasani, H.M., P.G. Sammes, Laser induced surface modification of polydimethylsiloxane as a super-hydrophobic material. Radiation Physics and Chemistry., 1996. 47: p. 881~888. 43. M.T. Khorasani, H.M, P.G. Sammes, Laser surface modifcation of polymers to improve biocompatibility: HEMA grafted PDMS, in vitro assay III. Radiation Physics and Chemistry, 1999. 55: p. 685~689. 44. F. Abbasia, H.M., Adhesion between modified and unmodified poly(dimethylsiloxane) layers for a biomedical application. International Journal of Adhesion & Adhesives, 2004. 24: p. 247-257. 45. Jolrg Lahann, M.B., Hang Lu, Teresa Rodon, Klavs F. Jensen, and Robert Langer,, Reactive Polymer Coatings: A First Step toward Surface Engineering of Microfluidic Devices. Analytical. Chemistry., 2003. 75: p. 2117-2122. 46. David C. Duffy, J.C.M., Olivier J. A. Schueller, and George M. Whitesides, Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical. Chemistry., 1998. 70: p. 4974-4984. 47. 劉博文, ULSI製程技術, 2003: p. 75. 48. 黃振翁, 應用多功能基薄膜純化及固定化盤尼西林醯胺酵素. 2004. 49. 張簡志強, 應用金屬親和薄膜分離純化盤尼西林醯胺酵素. 國立中興大學化學工程學系碩士論文, 2003.
摘要: 
Polydimethylsiloxane (PDMS)容易加工以及製作成本低廉,因此廣泛應用在製作微流體晶片上;但PDMS表面呈現疏水性質,所以很難把蛋白質固定在PDMS表面。本研究為了解決上述的問題,用Piranha solution氧化PDMS表面,再加入epichlorohydrin (EPI)反應,使PDMS表面具有環氧基。並以聚離氨酸(84 KDa)以及酪蛋白當介質,進行蛋白質固定於PDMS表面上之研究。結果顯示以酪蛋白為介質時,固定在PDMS表面的蛋白質為較多。將anti-HSA固定在PDMS表面上(此PDMS表面有酪蛋白當介質),運用在競爭免疫分析,線性範圍在0.200~0.800mg/ml,偵測極限為0.031mg/ml。

Polydimethylsiloxane (PDMS) is widely used in microfluidic chip, because of its ease of fabrication and low cost. PDMS is due to hydrophobic not ease to immobilize protein on PDMS surface. In order to solve the problem, PDMS surface is oxidized with Piranha solution and then epichlorohydrin (EPI) was added. After that, epoxy group was generated on PDMS surface.Polylysine (84 KDa) or casein is intermediate, and protein immobilizes on PDMS surface. While casein is used as the intermediate, the amount of protein immobilized on PDMS surface is larger. Anti-HSA immobilizes on PDMS surface and uses it in competitive immunoassay. The linear range is 0.200~0.800mg/ml with the detection limit of 0.031mg/ml.
URI: http://hdl.handle.net/11455/3577
其他識別: U0005-2008200615264500
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.