Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35774
標題: 利用分子篩精煉無水酒精最佳運作參數之研究
The Study of Optimal Operating Parameters to Purify Anhydrous Ethanol with Molecular Sieves
作者: 陳韋誠
Chen, Wei-Cheng
關鍵字: 分子篩;Molecular Sieves;無水酒精;吸附;脫附;再生;Anhydrous Ethanol;Adsorption;Desorption;Regeneration
出版社: 生物產業機電工程學系所
引用: 1.Adolphs, J. and Setzer, M. J. 1996. Energetic classification of adsorption isotherms. Journal of Colloid and Interface Science, 184(2), 443-448. 2.Al-Hasan, M. 2003. Effect of ethanol – unleaded gasoline blendson engine performance and exhaust emission. Energy Conversion and Management, 44, 1547-1561. 3.Al-Asheh, S., Banat, F. and Al-Lagtah, N. 2004. Separation of ethanol–water mixtures using molecular sieves and biobased adsorbents. Chemical Engineering Research and Design, 82 (7), 855-864. 4.Aksu, Z. and Gonen, F. 2004. Biosorption of phenol by immobilized activated sludge in a continuous packed bed: prediction of breakthrough curves. Process Biochemistry, 39 (5), 599-613. 5.Ahn, H., Lee, H., Lee, S. B., & Lee, Y. 2006. Pervaporation of an aqueous ethanol solution through hydrophilic zeolite membranes. Desalination, 193 (1), 244-251. 6.ASTM International. 2004. Standard specification for denatured fuel ethanol for blending with gasoline for use as automotive spark ignition engine fuel. D4806-13. 7.Anderson, J. E., Kramer, U., Mueller, S. A. and Wallington, T. J. 2010. Octane numbers of ethanol and methanol - gasoline blends estimated from molar concentrations. Energy and Fuels, 24 (12), 6576-6585. 8.Bowen, T. C., Noble, R. D. and Falconer, J. L. 2004. Fundamentals and applications of pervaporation through zeolite membranes. Journal of Membrane Science, 245 (1), 1-33. 9.Bayraktar, H. 2007. Theoretical investigation of flame propagation process in an SI engine running on gasoline – ethanol blends. Renew Energy, 32 (5), 758-771. 10.Carton, A., Gonzilez, G., Torre, A. I. D. L. and Cabezas, J. L. 1987. Separation of ethanol-water mixtures using 3A molecular sieve. Journal of Chemical Technology and Biotechnology, 39 (2), 125-132. 11.Crittenden, B. and Thomas, W. J. 1998. Adsorption technology and design. Butterworth –Heinemann. 12.Carmo, M. J. and Gubulin, J. C. 2002. Ethanol-Water separation in the PSA process. Adsorption, 8 (3), 235-248. 13.Cruz, P., Magalhaes, F. D. and Mendes, A. 2006. Generalized linear driving force approximation for adsorption of multicomponent mixtures. Chemical Engineering Science, 61 (11), 3519-3531. 14.Chinese National Standard. 2007. Denatured fuel ethanol for blending with gasolines for use as automotive spark-ignition engine fuel. Bureau of Standards, Metrology and Inspection, M.O.E.A., R.O.C., CNS-15109. 15.Chen, Y. L., Chen, S. M., Tsai J. M., Tsai, C. Y., Fang, H. H., Yang I. C. and Liu, S. Y. 2012. Optimization of suitable ethanol blend ratio for motorcycle engine using response surface method. Journal of Environmental Science and Health, Part A 47, 101-108. 16.Davis, M. E. and Lobo, R. F. 1992. Zeolite and molecular sieve synthesis. Chemistry of Materials, 4 (4), 756-768. 17.Dussel, R. and Stichlmair, J. 1995. Separation of azeotropic mixtures by batch distillation using an entrainer. Computers and Chemical Engineering, 19 (1), 113-118. 18.Demirbas A. 2005. Bioethanol from cellulosic materials: A renewable motor fuel from biomass. Energy Sources, 27 (4), 327-337. 19.Dias, M. O. S., Cunha, M. P., Jesus, C. D. F., Rocha, G. J. M., Pradella, J. G. C., Rossell, C. E. V., Filho, R. M. and Bonomi, A. 2011. Second generation ethanol in Brazil: Can it compete with electricity production?. Bioresource technology, 102 (19), 8964-8971. 20.Gaillaud, M. E. 1961. Diaphragm Pumps. U.S. Patent 2,944,627, assigned to Societe Anonyme Francaise pour la Separation, I’Emulsion et le Melange. 21.Gunst, R. F. 1996. Response surface methodology: process and product optimization using designed experiments. Technometrics, 38 (3), 284-286. 22.Gong, C. S., Cao, N. J., Du J. and Tsao G. T. 1999. Ethanol Production from Renewable Resources. Advances in Biochemical Engineering/Biotechnology, 65, 207-241. 23.Gorbach, A., Stegmaier, M. and Eigenberger, G. 2004. Measurement and modeling of water vapor adsorption on zeolite 4A-Equilibria and kinetics. Adsorption, 10 (1), 29-46. 24.Guan, H. M., Chung, T. S., Huang, Z., Chng M. L. and Kulprathipanja, S. 2006. Poly (vinyl alcohol) multilayer mixed matrix membranes for the dehydration of ethanol–water mixture. Journal of Membrane Science, 268 (2), 113-122. 25.Hill, W. J. and Hunter, W. G. 1966. A review of response surface methodology: a literature survey. Technometrics, 8 (4), 571-590. 26.Hartzog, D. G. and Sircar, S. 1995. Sensitivity of PSA process performance to input variables. Adsorption, 1 (2), 133-151. 27.Hsieha W. D., Chen R. H., Wu T. L. and Lin, T. H. 2002. Engine performance and pollutant emission of an SI engine using ethanol-gasoline blended fuels. Atmospheric Environment, 36 (3), 403-410. 28.Jaroniec, M., Sokolowski, S. and Cerofolini, G. F. 1976. Adsorption parameters and the form of the energy distribution function-a discussion. Thin Solid Films, 31 (3), 321-328. 29.Jiang, L., Biegler, L. T. and Fox, V. G. 2003. Simulation and optimization of pressure‐swing adsorption systems for air separation. American Institute of Chemical Engineers Journal, 49 (5), 1140-1157. 30.Kwanchareon, P., Apanee, L. and Samai, J. I. 2007. Solubility of a diesel-biodiesel-ethanol blend, its fuel properties, and its emission characteristics from diesel engine. Fuel, 86 (7-8), 1053-1061 31.Kaminski, W., Marszalek, J. and Ciolkowska, A. 2008. Renewable energy source-dehydrated ethanol. Chemical Engineering Journal, 135 (1), 95-102. 32.Lok, B. M., Cannan, T. and Messina, C. A. 1983. The role of organic molecules in molecular sieve synthesis. Zeolites, 3 (4), 282-291. 33.Lee, C. Y., McCammon, J. A. and Rossky, P. J. 1984. The structure of liquid water at an extended hydrophobic surface. Journal of Chemical Physics, 80 (9), 4448-4455. 34.Lee, F. M. and Pahl, R. H. 1985. Solvent screening study and conceptual extractive distillation process to produce anhydrous ethanol from fermentation broth. Industrial and Engineering Chemistry Process Design and Development, 24 (1), 168-172. 35.Lilling, H. J. 1989. Process for the production of ethanol through molasses fermentation. U.S. Patent 4,886,751. 36.Ligero, E. L.and Ravagnani, T. M. K. 2003. Dehydration of ethanol with salt extractive distillation - a comparative analysis between processes with salt recovery. Chemical Engineering and Processing: Process Intensification, 42 (7), 543-552. 37.Lin, Y. and Tanaka, S. 2006. Ethanol fermentation from biomass resources: current state and prospects. Applied Microbiology and Biotechnology, 69 (6), 627-642. 38.Liaquat, A. M., Kalam, M. A., Masjuki, H. H. and Jayed, M. H. 2010. Potential emissions reduction in road transport sector using biofuel in developing countries. Atmospheric Environment, 44 (32), 3869-3877. 39.Lewis, F. L., Vrabie, D. and Syrmos, V. L. 2012. Optimal control. John Wiley and Sons, Inc., Hoboken, New Jersey. 40.Meirelles, A., Weiss, S. and Herfurth, H. 1992. Ethanol dehydration by extractive distillation. Journal of Chemical Technology and Biotechnology, 53 (2), 181-188. 41.Myers, R. H. and Montgomery, D. C. 2009. Response surface methodology : process and product optimization using designed experiments. Wiley Series in Probability and Statistics, third edition, John Wiley and Sons, Inc., Hoboken, New Jersey. 42.Nissen, T. L., Schulze, U., Nielsen, J. and Villadsen, J. 1997. Flux distributions in anaerobic, glucose-limited continuous cultures of Saccharomyces cerevisiae. Microbiology, 143 (1), 203-218. 43.Puziy, A. M., Matynia, T., Gawdzik, B. and Poddubnaya, O. I. 1999. Use of CONTIN for calculation of adsorption energy distribution. Langmuir, 15 (18), 6016-6025. 44.Pruksathorn, P. and Vitidsant, T. 2009. Production of pure ethanol from azeotropic solution by pressure swing adsorption. Korean Journal of Chemical Engineering, 26 (4), 1106-1111. 45.Repke, J. U., Klein, A., Bogle, D. and Wozny, G. 2007. Pressure swing batch distillation for homogeneous azeotropic separation. Chemical Engineering Research and Design, 85 (4), 492-501. 46.Ravagnani, M. A. S. S., Reis, M. H. M. and Wolf-Maciel, M. R. 2010. Anhydrous ethanol production by extractive distillation: A solvent case study. Process Safety and Environmental Protection, 88 (1), 67-73. 47.Skarstrom, C. W. 1960. Method and apparatus for fractionating gaseous mixtures by adsorption. U.S. Patent 2,944,627, assigned to Esso Research and Engineering Company. 48.Steele, W. 1993. Molecular interactions for physical adsorption. Chemical Reviews, 93 (7), 2355-2378. 49.Szczodrak, J. and Fiedurek, J. 1996. Technology for conversion of lignocellulosic biomass to ethanol. Biomass and Bioenergy, 10 (5–6), 367-375. 50.Silva, J. A. and Rodrigues, A. E. 1997. Fixed-bed adsorption of n-pentane/isopentane mixtures in pellets of 5A zeolite. Industrial and Engineering Chemistry Research, 36 (9), 3769-3777. 51.Stichlmair, J. and Fair, J. R. 1998. Distillation: principles and practices. New York: Wiley-VCH. 52.Szostak, R. 1998. Molecular sieves: principles of synthesis and identification. Springer, second edition, published by Blackie Academic. 53.Simo, M., Brown, C. J. and Hlavacek, V. 2008. Simulation of pressure swing adsorption in fuel ethanol production process. Computers and Chemical Engineering, 32 (7), 1635-1649. 54.Simo, M., Sivashanmugam, S., Brown, C. J. and Hlavacek, V. 2009. Adsorption/desorption of water and ethanol on 3A zeolite in near-adiabatic fixed bed. Industrial and Engineering Chemistry Research, 48(20), 9247-9260. 55.Sato, K., Sugimoto, K. and Nakane, T. 2008. Mass-production of tubular NaY zeolite membranes for industrial purpose and their application to ethanol dehydration by vapor permeation. Journal of Membrane Science, 319 (1), 244-255. 56.Sato, K., Aoki, K., Sugimoto, K., Izumi, K., Inoue, S., Saito, J. and Nakane, T. 2008 Dehydrating performance of commercial LTA zeolite membranes and application to fuel grade bio-ethanol production by hybrid distillation/vapor permeation process. Microporous and Mesoporous Materials, 115 (1), 184-188. 57.Thomas, H. C. 1948. Chromatography: a problem in kinetics. Annals of the New York Academy of Sciences, 49 (2), 161-182. 58.Teo, W. K. and Ruthven, D. M. 1986. Adsorption of water from aqueous ethanol using 3-A molecular sieves. Industrial and Engineering Chemistry Process Design and Development, 25, 17-21. 59.Ueda, S., Zenin, C. T., Monteiro, D. A. and Park, Y. K. 1981. Production of ethanol from raw cassava starch by a nonconventional fermentation method. Biotechnology and Bioengineering, 23 (2), 291-299. 60.Vane, L. M. 2005. A review of pervaporation for product recovery from biomass fermentation processes. Journal of Chemical Technology and Biotechnology, 80 (6), 603-629. 61.Vane, L. M. and Alvarez, F. R. 2008. Membrane‐assisted vapor stripping: energy efficient hybrid distillation–vapor permeation process for alcohol–water separation. Journal of Chemical Technology and Biotechnology, 83 (9), 1275-1287. 62.Walas, S. M. 1985. Phase equilibria in chemical engineering. Butterworth Publishers, Stoneham, MA, USA. 63.Westgate, P. J. and Ladisch, M.R. 1993. Sorption of organics and water on starch. Industrial and Engineering Chemistry Research, 32 (8), 1676-1680. 64.Waldron, W. E. and Sircar, S. 2000. Parametric study of a pressure swing adsorption process. Adsorption, 6 (2), 179-188.
摘要: 
因應全球性能源發展趨勢及溫室氣體效應,生質能源的應用逐漸被重視,而酒精汽油為其中一種替代能源,需將酒精濃度99.3 wt%以上之無水酒精摻入油品中作為車用燃料可降低空氣汙染。因此本研究建立一套生質酒精生產系統,以3-A型分子篩做為吸附劑將酒精脫水,當分子篩吸附酒精中的水分達飽合後,需利用高溫氮氣持續加熱進行再生還原,分子篩方可重複再利用。研究過程中,亦利用反應曲面法探討分子篩還原之最佳操作模式,以供大型工廠量產時之參考依據。本研究中以糖蜜做為酒精原料,經發酵後再經蒸餾塔進行蒸餾,經冷凝器冷凝後並配製95.08 wt% 之酒精濃度,以此樣本濃度進行分子篩再生還原後的測試,經實驗最佳化分析結果顯示,當分子篩還原溫度設定在193℃並持續加熱7小時40分下,其分子篩還原所需成本最低 (單位能源產率為0.283 (L/ kW-hr)),可產出60公升之無水酒精,而用電量為212.1 kW-hr。

In response to the global energy development trend and greenhouse effects, bio-energy applications gradually are being taken seriously. Gasohol is one of the alternative energy. The mixture of anhydrous ethanol which purity was 99.3 wt% or higher blended with gasoline is served as a car fuel that reduces air pollution. Therefore, a system was constructed for bio-ethanol production in this study, and 3A-type molecular sieves were used as adsorbent on ethanol dehydration. When particles in molecular sieves adsorb the water from ethanol samples until they are saturated, regeneration is performed using continuous heating with high-temperature nitrogen. Furthermore, molecular sieves can be reused in every regeneration cycle.
During the study, we also applied a response surface methodology to determine an optimized operational model for molecular sieves regeneration. In this study the molasses is used as a raw material for ethanol production. The molasses was fermented and then distilled using the distillation tower. Through the distillation tower, it can produce up to 95.08 wt% of the ethanol concentration in its mixture. This sample was further concentrated using molecular sieves. The results of optimization analysis indicated that the cost of molecular sieves regeneration (the unit energy yield was 0.283 L/ kW-hr) was the lowest at a temperature of 193 �C and a heating time of 7 hr and 40 min. The results also demonstrated that to yield 60 L of anhydrous ethanol did have an energy consumption of 212.1 kW-hr.
URI: http://hdl.handle.net/11455/35774
其他識別: U0005-1908201318182100
Appears in Collections:生物產業機電工程學系

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.