Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3578
標題: 聚對苯二甲酸二乙酯/二氧化矽奈米複合材料之製備與物性分析
Preparation and Physical Properties of Poly(ethylene terephthalate)/Silica Nanocomposites
作者: 葉佳炘
Yeh, Chia-Hsing
關鍵字: Poly(ethylene terephthalate);聚對苯二甲酸二乙酯;Silica;Nanocomposites;二氧化矽;奈米複合材料
出版社: 化學工程學系所
引用: 1. Ravindranath, K. and Mashelkar, R.A., Chemical Engineering Science, 41, 2197 (1986) 2. Sami, A.R.; Lofgren, E.A. and Jabarin, S.A., Polymer International, 57, 174 (2002) 3. Holland, B.J.; Hay, J.N., Polymer, 43, 1835 (2002) 4. Sanches, N.B.; Dias, M.L. and Pacheco, E.B.A.V., Polymer Testing, 24, 688 (2005) 5. 胡德, “高分子物理與機械性質”, 國立編譯館, 第71頁 (2001) 6. Sawyer L.C. and Grubb D.T., Polymer Microscopy, Chapman and Hall, London (1987) 7. Ibaraki, T.Y.; Takatsuki, S.N.; Suita, M.T. and Nishinomiya, M.K., U.S. Patent 5,863,647 (1999) 8. Prado, Alexandre G. S. and Airold, C., Journal of Colloid and Interface Science, 236, 161 (2001) 9. Salse, Jose A. A.; Prado, Alexandre G. S. and Airoldi, C., Polyhedron, 21, 2647 (2002) 10. Prado, Alexandre G.S.; Sales, Jose A.A. and Carvalho, Rogerio M., Journal of Non-Crystalline Solids, 333, 61 (2004) 11. Lin, C.C., Polymer Engineering and Science, 23, 113 (1983) 12. Kong, X.; Yang, X.; Zhou, E. and Ma, D., European Polymer Journal, 36, 1085 (2000) 13. Xu, W.; Ge, M. and He, P., Journal of Applied Polymer Science, 82, 2281 (2001) 14. Nakamura, K.; Katayama, K. and Amano, T., Journal of Applied Polymer Science, 17, 1031 (1939) 15. Kissinger, H.E., Journal of Research of the National of Standards, 57, 217 (1956) 16. Fann, D.M.; Huang, Steve K. and Lee, J.Y., Polymer Engineering and Science, 38, 265 (1998) 17. Wasiak, A.; Sajkieuwicz, P.; Wozniak, A., Journal of Polymer Science : Part B : Polym. Phys., 37, 2821 (1999) 18. Chisholm, B.J. and Zimmer, J.G., Journal of Applied Polymer Science, 76, 1296 (2000) 19. Lu, X.F. and Hay, J.N., Polymer, 42, 9423 (2001) 20. Kong, Y. and Hay, J.N., Polymer, 44, 623 (2003) 21. Fann, D.M.; Huang, Steve K. and Lee, J.Y., Journal of Applied Polymer Science, 61, 1375 (1996) 22. Fann, D.M.; Huang, Steve K. and Lee, J.Y., Journal of Applied Polymer Science, 61, 261 (1996) 23. Bang, H.J.; Lee, J.K. and Lee, K.H., Journal of Polymer Science : Part B : Polym. Phys., 38, 2625 (2000) 24. Wang, R.; Wu, R.R.; Zhang, D.S. and Xu, X., Modern Chemical Industry, 18, 181 (2002) 25. Wang, R.; Wu, R.R.; Zhang, D.S. and Xu, X., Modern Chemical Industry, 22, 34 (2002) 26. Chung, S.C.; Hahm, W.G. and Im, S.S., Macromolecular Research, 10, 221 (2002) 27. Bian, J.; Ye, S. and Feng, L.X., Journal of Polymer Science : Part B : Polym. Phys., 41, 2135 (2003) 28. Kim, S.H.; Ahn, S.H. and Hirai, T., Polymer, 44, 5625 (2003) 29. 陳協志著"聚酯奈米複合材料基板之製備與物性特性研究 ",國立中興大學材料工程學系碩士論文 (2003年6月) 30. Liu, W.; Tian, X.; Cui, P.; Li, Y.; Zheng, K. and Yang, Y., Journal of Applied Polymer Science, 91. 1229 (2004) 31. Enomoto, N.; Nishida, H. and Komatsu, M., US Patent 5,004,869 (1991) 32. Lee, K.H. and Woo, S.S.,US Patent 5,756,032 (1998) 33. Enomoto, N.; Nishida, H. and Komatsu, M., US Patent 5,935,700 (1999) 34. Run, M.; Wu, S. and Wu, G., Microporous and Mesoporous Materials, 74, 37 (2004) 35. Run, M.; Wu, S.; Zhang, D. and Wu, G., Polymer, 46, 5308 (2005) 36. 陳智仁著"聚對苯二甲酸乙二酯結晶形態",私立元智大學 化學工程學系碩士論文(2001年7月) 37. 許嘉惠著"聚對苯二甲酸乙二酯結晶行為-熱歷史效應",私 立元智大學化學工程學系碩士論文(2003年7月) 38. 庄清平, “中國粉體技術”, 6期, 第36頁 (2003) 39. Kong, X.; Yang, X.; Zhou, E. and Ma, D., European Polymer Journal, 36, 1085 (2000) 40. Johnsen, B.B.; Olafsen, K. and Stori, A., International Journal of Adhesion & Adhesives, 23, 155 (2003) 41. Chen, L.W. and Chen, J.W., Journal of Applied Polymer Science , 75, 1229 (2000) 42. Groeninckx, G.; Reynaers, H.; Berghmans, H. and Smets, G., Journal of Polymer Science : Polymer Physics Edition, 18, 1311 (1980) 43. Wang, Z.G.; Hsiao, B.S.; Sauer, B.B. and Kampert, W.G., Polymer, 40, 4615 (1999) 44. Jabarin, S.A., Journal of Applied Polymer Science, 34, 85 (1987) 45. Tan, S.; Su, A.; Li, W. and Zhou, E., Journal of Polymer Science : Part B : Polym. Phys., 38, 53 (2000) 46. Chuah, Hoe H., Polymer Engineering and Science, 41, 308 (2001) 47. Goschel, U.; Deutscher, K. and Abetz, V., Polymer, 37, 1 (1996)
摘要: 
本研究以兩種方法改質二氧化矽,第一種為GPS改質二氧化矽,使二氧化矽表面帶有環氧基,而第二種方法是用AEE與GPS改質二氧化矽表面之環氧基反應形成羥基,椄枝在二氧化矽表面。將改質二氧化矽分散於乙二醇後,與對苯二甲酸、對苯二甲酸二乙酯、觸媒,利用原位聚合法合成聚對苯二甲酸二乙酯/二氧化矽奈米複合材料,極限黏度值在0.51 ~ 0.70,平均分子量為13520 ~ 25130。
TGA分析,發現聚對苯二甲酸二乙酯/二氧化矽複材,於重量5 % 損失時,複材之熱裂解溫度由407.2 ℃提升至418.3 ℃,提升11.1 ℃。DSC分析發現,降溫速率10 ℃/min時,聚對苯二甲酸二乙酯/二氧化矽複材第一段降溫之冷卻結晶溫度由171.2℃提升至198.5 ℃,第二段升溫之熔點由241.2 ℃提升至248.3 ℃。DSC之非等溫結晶動力學分析,降溫速率10 ℃/min時,聚對苯二甲酸二乙酯/二氧化矽複材的結晶半週期由3.50分鐘,降至3.48~1.69分鐘,n值在2.48~2.96之間。等溫結晶動力學分析,於等溫結晶溫度190 ℃時,添加改質二氧化矽於聚對苯二甲酸二乙酯複材,其結晶半週期由2.07分鐘降至0.16 ~ 1.28分鐘,n值1.61 ~ 2.05之間。POM觀察添加改質二氧化矽於聚對苯二甲酸二乙酯複材,於等溫結晶溫度225 ℃時,其球晶成長速率較聚對苯二甲酸二乙酯快,球晶形態為異常球晶。DMA分析,AEE-GPS改質二氧化矽之聚對苯二甲酸二乙酯複材,於30 ℃下之儲存模數為1.49E9 ~ 1.53E9 Pa,較GPS改質二氧化矽之聚對苯二甲酸二乙酯複材為1.17E9 ~ 1.33E9 Pa,提升15.0 % ~ 27.4 %。
由FE-SEM斷裂面形態分析,觀察到改質之二氧化矽粒子均勻分佈於聚對苯二甲酸二乙酯基材中,二氧化矽粒子直徑大約在40 nm至50 nm左右,再經由X光能量散射光譜儀,觀察到改質之二氧化矽粒子直徑大約在36 nm左右,達到奈米級分散。TEM形態分析,觀察到改質之二氧化矽粒子直徑大約在50 nm至100 nm左右。

In this research, two methods were used to modify silica. For the first method, we modified silica with GPS to form epoxy group grafted silica surface.For the second method, we used AEE to react with epoxy group to obtain hydroxyl group. Modified silica were dispersed in EG and mixed with TPA, BHET and catalyst. The mixture was made to be polymerized to synthesize the PET/SiO2 nanocomposites through standard polymerization steps of PET. Intrinsic viscosities of these nanocomposites were 0.51 ~ 0.70 and average molecular weight of these nanocomposites were 13520 ~ 25130.
According to the data of TGA at 5 % loss, as the content of modified silica increased in PET matrix, the decomposition temperature increased 11.1℃. DSC showed that the crystallization temperature increased from 171.2 ℃ to 198.5 ℃ and the melting point of PET/SiO2 nanocomposites increase from 241.2 ℃ to 248.3 ℃ at cooling rate of 10 ℃/min. For nonisothermal crystallization kinetics, data were carried out with half-time of crystallization of PET/SiO2 nanocomposites decreasing from 3.50 min to 3.48 ~ 1.69 min at cooling rate of 10 ℃/min and the those Avrami indices of PET/SiO2 nanocomposites are between 2.48 and 2.96. For isothermal crystallization, kinetics data were carried out with half-time of crystallization of PET/SiO2 decreasing from 2.07 min to 0.16 ~ 1.28 min at isothermal crystallization temperature of 200 ℃ and those Avrami indices of PET/SiO2 are between 1.61 and 2.05.
Polarized Optical Microscopy revealed that the addition of modified silica in PET increased the rate of crystallization grown at isothermal crystallization temperature of 225 ℃ and the crystal of PET crystallized at 225 ℃ were unusual spherulites. DMA data shows that the storage moduli of PET/1 ~ 3 wt% GPS modified silica nanocomposites were 1.17 E9 Pa ~ 1.33 E9 Pa, and the storage moduli of PET/1 ~ 3 wt% AEE-GPS modified silica nanocomposites were 1.49 E9 Pa ~ 1.53 E9 Pa at 30 ℃.
FE-SEM morphology studies observed a good dispersion of the modified silica dispersion in PET matrix, having average particles diameter of 40 to 50 nanometers. EDS morphology studies observed the modified silica dispersion in PET matrix, having average particles diameter of 36 nanometers. TEM morphology observed the modified silica dispersed in PET matrix, having average particles diameter of 50 to 100 nanometers.
URI: http://hdl.handle.net/11455/3578
其他識別: U0005-2107200620453700
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.