Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35803
標題: 稻米電磁波殺蟲模擬系統建立之研究
Study of Establishing Electromagnetic Wave Simulation System for Rice Insecticide
作者: 陳政佑
Chen, Cheng-Yu
關鍵字: 穀物殺蟲;grain insecticide;單模共振;介電加熱;模擬分析;電磁波;single-mode resonator;dielectric heating;simulation;electromagnetic wave
出版社: 生物產業機電工程學系所
引用: 1.王殿軒、劉炎、曹陽、李淑榮。2010。微波處理對赤擬穀盜各蟲態的致死效果。Journal of Nuclear Agricultural Sciences 24(3):569-574。 2.行政院農業委員會農糧署統計。2011。臺灣地區稻作種植、收穫面積及產量。行政院農業委員會農糧署。 3.吳柏青。1997。微波技術測定稻穀含水率之研究。農業機械學刊 6(3):73-88。 4.呂英華。2006。計算電磁學的數值方法。清華大學出版社。p.151~p.152。 5.林瑞明。2003。氮化鋁陶瓷材料之微波燒結與傳統燒結研究。碩士論文。台南:國立成功大學 化學工程研究所。 6.姚美吉、李啟陽。2007。倉庫害蟲之非農藥防治。作物蟲害之非農藥防治技術。p.87。行政院農委會農業試驗所出版。 7.姚美吉、李啟陽。2012。積穀害蟲防除-磷化氫燻蒸劑之作業規範。農業試驗所技術服務處89期:13-17。 8.姚美吉。2004。植物防疫檢疫重要積穀害蟲簡介。植物重要防疫檢疫害蟲診斷鑑定研習會:63-95。 9.徐常青、陳君、韓興國、喬海莉、郭昆、於晶、魏建健。2013。大功率微波防治大棚甜瓜及盆栽黃瓜根結線蟲研究。中國蔬菜(2):76-81。 10.祝聖遠、王國恆。2003。微波乾燥原理及其應用。工業爐 25(3):42-45。 11.曹宇欣。2008。微波單模共振腔於液體食品加熱之應用。碩士論文。台北:國立台灣大學生物產業機電工程學系。 12.曹潔穹、王健強、樊亞玲、趙宗儒。2006。微波加熱鬆散在片菸製絲工藝中的應用。菸草科技 第3期:5-8。 13.馮丁樹。1996。循環式稻穀乾燥模式之建立及應用。農業機械學刊 5(1):1-15。 14.黃進芳。2005。微波工程。初版。台灣。五南出版社。 15.楊文策。2010。單模共振腔介電加熱對米象防治之研究。碩士論文。台北:國立台灣大學生物產業機電工程學系。 16.萬一怒、溫碧洲、簡佳慧、鄭豐宗、陳吉南。2010。一種高功率電磁波消滅農作物內蟲或蟲卵的裝置。中華民國發明專利編號I357303。 17.趙思明、熊善柏、劉友明、譚汝成、程學勳、程科。2006。一種節能型穀物微波防蟲防霉的方法及專用設備。中華人民共和國國家知識產權局。申請號200610018419.5。 18.劉鍾棟。1998。微波技術在食品工業中的應用。初版,p.2。中國輕工業出版社。 19.American Society of Agricultural Engineers. 1982. Standard: ASAE S352.1. Moisture measurement-Grains and seeds. 20.Birla, S. L., S. Wang and J. Tang. 2008. Computer simulation of radio frequency heating of model fruit immersed in water. Journal of Food Engineering 84:270-280. 21.Boldor, D., T. H. Sanders and J. Simunovic. 2004. Dielectric Properties of In-Shell and Shelled Peanuts at Microwave Frequencies. Transactions of the ASAE 47(4): 1159-1169. 22.Bouvard, D., S. Charmond and C. P. Carry. 2010. Multiphysics Simulation of Microwave Sintering in a Monomode Cavity. Computer Modeling in Microwave Engineering & Applications. 12th Seminar. 23.COMSOL Multiphysics. 2010. Documentation for COMSOL Release 4.0a. COMSOL Inc., MA, USA. Available: http://www.comsol.com. 24.Davis, J. H. 1934. High frequency method of and apparatus for exterminating insect life in seed or grain or other materials. U.S. Patent NO. 1,972,050. 25.Endan, J., W. M. Abdullah and A. Hassan. 1983. The physical and thermal properties of milled rice. Engineering towards progressive agriculture: Proceedings of a National Symposium at University Pertanian Malaysia 22: 89–104. 26.Haswell, G. A. 1954. A note on the specific heat of rice, oats, and their products. Cereal Chemistry 31: 341–343. 27.Knoerzer, K., M. Regier and H. Schubert. 2008. A computational model for calculating temperature distributions in microwave food applications. Innovative Food Science and Emerging Technologies (9): 374-384. 28.Komarov, V., S. Wang and J. Tang. 2005. Permittivity and measurement. Encyclopedia of RF and Microwave Engineering. John Wiley & Sons, Inc. 29.Microwaves101.COM.2011. Miscellaneous dielectric constants. website: http://www.microwaves101.com/encyclopedia/Miscdielectrics.cfm 30.Nelson, S. O. 1996. Review and Assessment of Radio-Frequency and Microwave Energy for Stored-Grain Insect Control. Transactions of the ASAE 39(4): 1475-1484. 31.Nelson, S. O. and A. W. Kraszewski. 1990. Grain Moisture Content Determination by Microwave Measurements. Transactions of the ASAE 33(4): 1303-1307. 32.Nelson, S. O. and B. H. Kantack. 1966. Stored-grain insect control studies with radio-frequency energy. J. Econ. Entomol. 59(3): 588-594. 33.Prasad, P. N. Singh. 2007. A New Approach to Predicting the Complex Permittivity000000000 of Rice. Transactions of the ASABE 50(2): 573-582. 34.Rohde&Schwarz. 2012. Measurement of Dielectric Material Properties-Application Note. Rohde & Schwarz. 35.Salvi, D., D. Boldor, G. M. Aita and C. M. Sabliov. 2011. COMSOL Multiphysics model for continuous flow microwave heating of liquids. Journal of Food Engineering 104(3):422-429. 36.Salvi, D., D. Boldor, J. Ortego, G. M. Aita and C. M. Sabliov. 2010. Numerical Modeling of Continuous Flow Microwave Heating: A Critical Comparison of COMSOL and ANSYS. Journal of Microwave Power and Electromagnetic Energy 44 (4):187-197. 37.Von Hippel, A. 1954. Dielectrics and Waves. New York. John Wiley & Sons. 38.Wang S., J.N. Ikediala, J. Tang, J.D. Hansen, E. Mitcham, R. Mao and B. Swanson. 2001. Radio frequency treatments to control codling moth in-shell walnuts. Postharvest Biology and Technology 22:9-38. 39.Wang S., M. Monzon, J.A. Johnson , E.J. Mitcham and J. Tang. 2007. Industrial-scale radio frequency treatments for insect control in walnuts: Heating uniformity and energy efficiency. Postharvest Biology and Technology 45:240-246. 40.Zhang H., A. K. Datta, I. A. Taub and C. Doona. 2001. Electromagnetics, Heat Transfer, and Thermokinetics in Microwave Sterilization. AIChE Journal 47, No.9.
摘要: 
本研究研製一套具有穩定能量分佈的電磁波單模共振系統,並以電腦模擬軟體建立該系統之電磁場分佈,探討稻米在電磁波殺蟲處理時的電磁場強度與溫度分佈之變化。該系統磁控管輸出2.45GHz頻率的電磁波,經由波導管以TE10模態導入圓柱形腔體並產生TM010模態單模共振,經實驗量測輸入腔體的功率為620W。
實驗顯示直徑2.5cm、高12.9cm之白米米柱加熱後,量測溫度與模擬計算所預測之溫度相關係數為0.89,顯示了所建立之電磁場分佈模型的適用性。然而以較大管徑米柱進行實驗,各量測點之溫度變異量遠大於2.5cm管徑米柱所量測之溫度變異量,顯示米柱半徑增加,白米顆粒與其間隙造成電磁波的反射、折射現象增加,電磁場強度分佈變異很大,但是米柱內各量測點之溫度差異反而變小,因此有較好的加熱均勻性。
本研究建立了單模共振電磁波加熱系統與稻米之電磁場與溫度分佈模擬分析方法,將可作為未來探討改進本研究室研發之穀物線上高速殺蟲系統與建立其模擬分析模型的依據。

An electromagnetic wave system generates single-mode resonant and stable energy distribution was build in this study. A electromagnetic wave simulation procedure was applied to study the electromagnetic field and temperature distribution in white rice which is applied for insect elimination by the system. The system’s magnetron generates 2.45GHz electromagnetic waves, transmitted by waveguide with TE10 mode to resonant cavity with TM010 single-mode. In the cavity, the measured power input is 620 watts.

According to experiments, the temperature distributions of a cylindrical white rice bar with 2.5cm in diameter and 12.9cm in height heated by the electromagnetic waves of the system has correlation coefficient 0.89 with the temperature distributions calculated from simulation, which shows the suitability of the electromagnetic waves simulation model. However, the coefficient of variances of all temperature measurement points were highly increased with rice bars’ diameter increased, which indicates the diameter variance of rice bar sensitively affecting the electromagnetic field distribution, which because the electromagnetic wave reflection and refraction were increased within the rice kernels. However, the phenomena increase the temperature uniformity in a rice bar.

The developed single-mode resonant electromagnetic wave system and its electromagnetic wave simulation procedure developed in this study can be further applied to improve the Online High Speed Grain Insecticidal System developed in our lab and to simulate its functions in the future.
URI: http://hdl.handle.net/11455/35803
其他識別: U0005-2708201319410000
Appears in Collections:生物產業機電工程學系

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.