Please use this identifier to cite or link to this item:
標題: 高表面積化銅電極的製作與在電化學感測器的應用
Fabrication of High Surface-area Copper Electrodes for the Application of Electrochemical Sensors
作者: 江權庭
Jiang, Chiuan-Ting
關鍵字: 氫氧化銅;Cu(OH)2;磷酸銅;銅電極;奈米結構;Cu3(PO4)2.2H2O;copper electrode;nanostructure
出版社: 生物產業機電工程學系所
引用: 林家鴻, 非標定式阻抗分析免疫感測器於Enrofloxacin藥物的檢測, 國立中興大學生物產業機電工程研究所, 2008年7月 楊東潔,整合交流電滲流之阻抗式核酸生物感測晶片的研發,國立中興大學生物產業機電工程研究所,2010年7月 Atanasov P. and Wilkins E., Biosensors for detection of pathogenic bacteria, Biosens. and Bioelectron., 14 (1999) 599-624. Balkenhohl T., Lisdat F., Screen-printed electrodes as impedimetric immunosensors for the detection of anti-transglutaminase antibodies in human serum, Anal. Chim. Acta, 597 (2007) 50-57. Bard, A.J., Larry,R.F., Electrochemical methods fundamentals and applications, 2nd Ed.,John Wiley & Sons Inc., New York, 2000. Bicer M. and Sisman I., Controlled synthesis of copper nano/microstructures using ascorbic acid in aqueous CTAB solution, Powder Technol., 198 (2010) 279-284. Chen D. J., Lu Y. H., Wang A. J., Feng J. J., Huo T. T., Dong W. J., Facile synthesis of ultra-long Cu microdendrites for the electrochemical detection of glucose, J Solid State Electrochem., 16 (2012) 1313–1321. Chen S. D., Guozhen, Kaibin T., Yitai Q., Large-scale synthesis of CuO stuttle-like crystals via a convenient hydrothermal decomposition route, J. Cryst. Growth, 254 (2003) 225-228. Chen Y., Wang W., Duan J., Chen H. and Chen G., Separation and determination of clenbuterol, comaterol and salbutamol by capillary electrophoresis with amperometric detection, Electroanalysis, 17 (2005) 706-712. Ding Y., Zhang P., Qu Y., Jiang Y., Huang J., Yan W., Liu G., AFM characterization and electrochemical property of Agnanowires by modified AAO template method, J. Alloys Compd., 466 (2008) 479-482. El-Said W. A.,Kim T. H.,Kim H.,Choi. J. W., Detection of effect of chemo- Huang H., Pixin R., Liu Z., Application of electrochemical impedance spectroscopy for monitoring allergen-antibody reactions using gold nanoparticle-based biomolecular immobilization method, Anal. Biochem., 356 (2006) 208-214. Jacobson G. A., Chong F. V. and Davies N. W., LC-MS method for the determination of albuterol enantiomers in human plasma using manual solid-phase exreation and non-deuterated internal standard, J pharm. Biomed. Anal., 31 (2003) 1237-1243. Kang X., Mai Z., Zou X., Cai P., Mo J., A sensitive nonenzymatic glucose sensor in alkaline media with a copper nanocluster/multiwall carbon nanotube-modified glassy carbon electrode, Anal. Biochem., 363 (2007) 143–150. Kuz’menko A. B., Marel D. van der, Bentum P. J. M. van, Infrared spectroscopic study of CuO: Signatures of strong spin-phonon interaction and structural distortion, Tishchenko E. A., Presura C. and Bush A. A., Physics reviews, 63 (2001) 094303. La D. D., Nguyen T. A., Lee S., Kim J. W., Kim Y. S., A stable superhydrophobic and superoleophilic Cu mesh based on copper hydroxide nanoneedle arrays, Appl. Surf. Sci., 257 (2011) 5705-5710. Le W. Z. and Liu Y. Q., Preparation of nano-copper oxide modified glassy carbon electrode by a novel film plating/potential cycling method and its characterization, Sens. Actuators B., 141 (2009) 147-153. Lee S. J., Anandan V., Zhang G., Electrochemical fabrication and evaluation of highly sensitive nanorod-modified electrodes for a biotin/avidin system, Biosens. Bioelectron., 23 (2008) 1117–1124. Li J. and Lin X., Electrocatalytic oxidation of hydrazine and hydroxylamine at gold nanoparticle—polypyrrole nanowire modified glassy carbon electrode, Sens. Actuators, B 126 (2007) 527–535. Lu D. L., Okawa Y., Suzuki K., Tanaka K. I., The shape and structure of gold particles grown at different electrode potentials, Surf, Sci., 325 (1995) 397-405. Min Y. L., Wang T., Chen Y. C., Microwave-assistant synthesis of ordered CuO micro-structures on the substrate, Appl. Surf. Sci., 257 (2010) 132-137. Reitz J. B. and Edward I., Propylene Oxidation on Copper Oxide Surfaces:  Electronic and Geometric Contributions to Reactivity and Selectivity, JACS, 120 (1988) 11467-11478. Sathish R., Kumara B.E. S., CuO nanoparticle sensor for the electrochemical determination of dopamine, Jayadevappa,H. Electrochim Acta, 61 (2012) 78-86. Shi Y. F., Huang Y., Duan J. P., Chen H. Q. and Chen G. N., Field-amplified on-line sample stacking for separation and determination of cimaterol, clenbuterol and salbutamol using capillary electrophoresis, J. Chromatogr. A, 1125 (2006) 124-128. Shoesmith D. W., Rummery T. E., Owen D., and Lee W., Anodic Oxidation of Copper in Alkaline Solutions, J. Elecrtochem. Soc.: Electrochemical Science and Technology, 123 (1976) 790-799. Szyma’nska I., Radecka H., Radecki J., Kaliszan R., Electrochemical impedance spectroscopy for study of amyloid β-peptide interactions with (−) nicotine ditartrate and (−) cotinine, Biosens. Bioelectron., 22 (2007) 1955–1960. Tang D. P., Yuan R., Chai Y. Q., Dai J. Y., Zhong X., Liu Y., A novel immunosensor based on immobilization of hepatitis B surface antibody in platinum electrode modified colloidal gold and polyvinyl butyral as matrices via electrochemical impedance spectroscopy, Bioelectrochemistry, 65 (2004) 15-22. Teng F., Yao W. Q., Zhang Y. F., Ma Y. T., Teng Y., Xu T. G., Liagn S. H., Zhu Y. G., Synthesis of flower-like CuO nanostructures as a sensitive sensor for catalysis, Sens. Actuators, B.,134 (2008) 761-768. therapeutic agents to cancer cells on goldnanoflower patterned substrate using surface-enhanced Raman scattering andcyclic voltammetry, Biosens. Bioelectron., 26 (2010) 1486–1492. Tsai M. C.. and Chen P. Y., Voltammetric study and electrochemical detection of hexavalent chromium at gold nanoparticle-electrodeposited indium tinoxide(ITO) electrodes in acidic media, Talanta, 76 (2008) 533-539. Wang M. J., Wang L. Y., Wang G., Ji X. H., Bai Y. B., Li T. Ji., Gong S. Y., Li J. H., Application of impedance spectroscopy for monitoring colloid Au-enhanced antibody immobilization and antibody–antigen reactions, Biosens. Bioelectron. 19 (2004) 575–582. Wang W. W., Zhu Y. J., Cheng G. F., Huang Y. H., Microwave-assisted synthesis of cupric oxide nanosheets and nanowhiskers, Letter.Matter., 60 (2006) 609-612. Wang W. Z., Varghese O. M. K., Ruan C. N., Paulose M. and Grimes C. A., Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates, J. Mater. Res., 18 (2003) 12. Wang W. Z., Varghese O. M. K., Ruan C. N., Paulose M. and Grimes C. A., Synthesis of CuO and Cu2O crystalline nanowires using Cu(OH)2 nanowire templates, J. Mater. Res., 18 (2003) 12. Wang X., Hu C. G., Liu H., Du G. J., He X. S., Xi Y., Synthesis of CuO nanostructures and their application for nonenzymatic glucose sensing, Sens. Actuators. B., 144 (2010) 220-225. Wei Q., Zhao Y. F., Xu C. X., Wu D., Cai Y. Y., Jing H., He L., Bin D., Minghui Y., Nanoporous gold film based immunosensor for label-free detection of cancer biomarker, Biosens. Bioelectron., 26 (2011) 3714-3718. Wu X. F. and Shi G. Q., Fabrication of a lotus-like micro-nanoscale binary structured surface and wettability modulation from superhydrophilic to superhydrophobic, Nanotechnology 16 (2005) 2056-2060. Wu X., Shi G., Wang S. and Wu P., Formation of 3D Dandelions and 2D Nanowalls of Copper Phosphate Dihydrate on a Copper Surface and Their Conversion into a Nanoporous CuO Film, Eur. J. Inorg. Chem. (2005) 4775-4779. Wu Z. S., Li J.S., Luo M. H., Shen G. L., Yu R. Q. 2, A novel capacitive immunosensor based on gold colloid monolayers associated with a sol–gel matrix, Anal. Chim. Acta, 528 (2005) 235–24. XIE J. K., JIAO K., LIU H., Wang Q. X., LIU S. F., FU X., DNA Electro- chemical Sensor Based on PbSe Nanoparticle for the Sensitive Detection of CaMV35S Gene Sequence, Chin J Anal Chem, 36(7) (2008) 874–878. Xu Y., Jiang Y., Cai H., He P. G., Fang Y. Z., Electrochemical impedance detection of DNA hybridization based on the formation of M-DNA on polypyrrole/carbon nanotube modified electrode, Anal. Chim. Acta, 516 (2004) 19–27. Xu Y., Ye X., Yang L., He P. G., Fang Y., Impedance DNA Biosensor Using Electropolymerized Polypyrrole/Multiwalled Carbon Nanotubes Modified Electrode, Electroanalysis 18, 15 (2006) 1471–1478. Yoon H. , Deshpande D. C, Ramachandran V. and Varadan V. K., Aligned nanowire growth using lithography-assisted bonding of a polycarbonate template for neural probe electrodes, Nanotechnology, 19 (2008) 025304. Zhang K., Zhang N., Ci H., Wang C., A novel non-enzyme hydrogen peroxide sensor based on an electrode modified with carbon nanotube-wired CuO nanoflowers, Microchim acta 176 (2012) 137–142. Zhang T. T., Yuan R., Chai Y. Q., Li W. J, Ling S. J., A Novel Nonenzymatic Hydrogen Peroxide Sensor Based on a Polypyrrole Nanowire-Copper Nanocompositie Modified Gold Electorde, Sensor 8 (2008) 5141–5152. Zhang X. J., Wang G. F., Liu X. W., Wu J. J., Li M., Gu J., Liu H. and Fang B., Different CuO Nanostructures: Synthesis, Characterization, and Applications for Glucose Sensor, J. Phys. Chem., 112 (2008) 16845-16849. Zhuang Z. J., Su X. D., Su H. Y., Yuan H. Y., Sun Q., Xiao D., Martin M. F. C., An improved sensitivity non-enzymatic glucose sensor based on a CuO nanowire modified Cu electrode, Analyst ,133 (2008) 126–132.
In the development of commercial biosensors, it is one of the important trends to reduce the electrode fabrication costs, improve the sensitivity, and lower the detection limit. In this study, a method of fabricating high surface-area copper electrode has been developed. By applying -0.181 V potential at 50oC in 1 M NaOH, the 2.84 ± 0.31-μm long needles-like Cu(OH)2 nanostructures can be reproducibly produced. However, the Cu(OH)2-deposited electrodes presented a poor conductivity without obvious redox reaction. Therefore, the dipping treatment for the alteration from the Cu(OH)2 nanostrctures to the sheet-like Cu3(PO4)2.2H2O nanostructures in pH-varied 100 mM Na2HPO4.Cu(OH)2 (pH5.0-7.0) has been discussed by the dissolution of Cu(OH)2 and the redeposition of Cu3(PO4)2.2H2O. The results show that the thickness, 51.9 ± 8.63 nm, of Cu3(PO4)2.2H2O nanosheets produced in 100 mM Na2HPO4 of pH 5.0 has the least variation and the best uniformity. To compare the electrochemical properties of Cu3(PO4)2.2H2O electrodes deposited in pH-varied 100 mM Na2HPO4 solution, the redox overpotential of Cu(0) and Cu(+2) increased with the decrase of Na2HPO4 pH values, and the redox peak current increased with the decreasing pH. Especially, the Cu3(PO4)2.2H2O-deposited electrodes fabricated in 100 mM Na2HPO4 of pH 5.0 exhibited high stability and reproducibility.

在商業化的感測器發展中,如何減少電極製作成本以及提高靈敏度降低檢測極限變成了現今生物感測器的重要趨勢。本研究中,我們開發製作高表面積化銅電極的方法,在50oC 1 M NaOH中施予-0.181 V電位可穩定製作出長約2.84 ± 0.31 μm針狀結構的Cu(OH)2,由於Cu(OH)2導電性差,此電極無法產生明顯氧化還原反應。因此實驗中利用不同pH值的100 mM Na2HPO4溶液對Cu(OH)2結構進行改質,發現在pH 5.0-7.0的100 mM Na2HPO4溶液中,可進行Cu(OH)2的溶解與產生Cu3(PO2)2.2H2O的再沉積,且在pH 5.0的100 mM Na2HPO4中可得厚度差異較小的片狀奈米結構(51.9 ± 8.63 nm),且其結構具有較好的均一性。比較在不同pH下沉積之Cu3(PO2)2.2H2O的電化學特性,發現其Cu(0)與Cu(+2)氧化還原過電壓會隨著pH值下降而增加,但氧化還原波峰電流隨pH值下降而上升,特別在pH 5.0的100 mM Na2HPO4製作的電極可具有高穩定性與製作再現性等特點。
其他識別: U0005-1308201210265100
Appears in Collections:生物產業機電工程學系

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.