Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35819
標題: 以桿狀病毒表現系統生產H6亞型流感HA似病毒顆粒及其免疫效果之評估
Production and Immunization of H6 subtype Influenza HA Virus-Like Particles by Baculovirus Expression System
作者: 馮昱維
Feng, Yu-Wei
關鍵字: 桿狀病毒;baculovirus;血球凝集素;似病毒顆粒;H6N1;hemagglutinin;virus-like particle;H6N1
出版社: 生物科技學研究所
引用: 1. Fouchier, R.A., et al., Characterization of a novel influenza A virus hemagglutinin subtype (H16) obtained from black-headed gulls. J Virol, 2005. 79(5): p. 2814-22. 2. Harris, A., et al., Influenza virus pleiomorphy characterized by cryoelectron tomography. Proc Natl Acad Sci U S A, 2006. 103(50): p. 19123-7. 3. W. Smith, C.A., P. Laidlaw, A Virus obtained from influenza patients. Lancet, 1933. 225 p. pp. 66–68. 4. Avian Influenza (bird flu). 2005 p. 1-3. 5. Treanor, J., Influenza vaccine--outmaneuvering antigenic shift and drift. N Engl J Med, 2004. 350(3): p. 218-20. 6. Shortridge, K.F., Pandemic influenza: a zoonosis? Semin Respir Infect, 1992. 7(1): p. 11-25. 7. Hotta, K., et al., Isolation and characterization of H6N1 and H9N2 avian influenza viruses from Ducks in Hanoi, Vietnam. Virus Res, 2012. 163(2): p. 448-53. 8. Chen, Z., et al., The receptor binding specificity of the live attenuated influenza H2 and H6 vaccine viruses contributes to vaccine immunogenicity and protection in ferrets. J Virol, 2012. 86(5): p. 2780-6. 9. Hoffmann, E., et al., Characterization of the influenza A virus gene pool in avian species in southern China: was H6N1 a derivative or a precursor of H5N1? J Virol, 2000. 74(14): p. 6309-15. 10. Chin, P.S., et al., Molecular evolution of H6 influenza viruses from poultry in Southeastern China: prevalence of H6N1 influenza viruses possessing seven A/Hong Kong/156/97 (H5N1)-like genes in poultry. J Virol, 2002. 76(2): p. 507-16. 11. Shen, C.I., et al., The infection of chicken tracheal epithelial cells with a H6N1 avian influenza virus. PLoS One, 2011. 6(5): p. e18894. 12. Medina, R.A. and A. García-Sastre, Influenza A viruses: new research developments. Nat Rev Microbiol, 2011. 9(8): p. 590-603. 13. Portela, A. and P. Digard, The influenza virus nucleoprotein: a multifunctional RNA-binding protein pivotal to virus replication. J Gen Virol, 2002. 83(Pt 4): p. 723-34. 14. Fortes, P., A. Beloso, and J. Ortin, Influenza virus NS1 protein inhibits pre-mRNA splicing and blocks mRNA nucleocytoplasmic transport. EMBO J, 1994. 13(3): p. 704-12. 15. Odagiri, T., et al., An amino acid change in the non-structural NS2 protein of an influenza A virus mutant is responsible for the generation of defective interfering (DI) particles by amplifying DI RNAs and suppressing complementary RNA synthesis. J Gen Virol, 1994. 75 ( Pt 1): p. 43-53. 16. Chen, W., et al., A novel influenza A virus mitochondrial protein that induces cell death. Nat Med, 2001. 7(12): p. 1306-12. 17. Chanturiya, A.N., et al., PB1-F2, an influenza A virus-encoded proapoptotic mitochondrial protein, creates variably sized pores in planar lipid membranes. J Virol, 2004. 78(12): p. 6304-12. 18. Henkel, M., et al., The proapoptotic influenza A virus protein PB1-F2 forms a nonselective ion channel. PLoS One, 2010. 5(6): p. e11112. 19. Wise, H.M., et al., A complicated message: Identification of a novel PB1-related protein translated from influenza A virus segment 2 mRNA. J Virol, 2009. 83(16): p. 8021-31. 20. Skehel, J.J. and D.C. Wiley, Receptor binding and membrane fusion in virus entry: the influenza hemagglutinin. Annu Rev Biochem, 2000. 69: p. 531-69. 21. Gamblin, S.J. and J.J. Skehel, Influenza hemagglutinin and neuraminidase membrane glycoproteins. J Biol Chem, 2010. 285(37): p. 28403-9. 22. White, J.M., Membrane fusion. Science, 1992. 258(5084): p. 917-24. 23. White, J.M. and I.A. Wilson, Anti-peptide antibodies detect steps in a protein conformational change: low-pH activation of the influenza virus hemagglutinin. J Cell Biol, 1987. 105(6 Pt 2): p. 2887-96. 24. Wiley, D.C. and J.J. Skehel, The structure and function of the hemagglutinin membrane glycoprotein of influenza virus. Annu Rev Biochem, 1987. 56: p. 365-94. 25. Burnet, F.M., Influenza virus on the developing egg. I. Changes associated with the development of an egg-passage strain of virus. Br J Exp Pathol, 1936. 17: p. 282-293. 26. 行政院衛生署疾病管制局, 認識流感疫苗:教學手冊. 2011. 27. Bright, R.A., et al., Influenza virus-like particles elicit broader immune responses than whole virion inactivated influenza virus or recombinant hemagglutinin. Vaccine, 2007. 25(19): p. 3871-8. 28. Seder, R.A. and S. Gurunathan, DNA vaccines--designer vaccines for the 21st century. N Engl J Med, 1999. 341(4): p. 277-8. 29. Smith, G.E., M.D. Summers, and M.J. Fraser, Production of human beta interferon in insect cells infected with a baculovirus expression vector. Mol Cell Biol, 1983. 3(12): p. 2156-65. 30. 靳子蓉.高穗生, 桿狀病毒表現載體之發展與應用. 行政院農業委員會農業藥物毒物試驗所技術專刊第137 號。. 31. Luckow, V.A., et al., Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J Virol, 1993. 67(8): p. 4566-79. 32. Song, C.S., et al., Induction of protective immunity in chickens vaccinated with infectious bronchitis virus S1 glycoprotein expressed by a recombinant baculovirus. J Gen Virol, 1998. 79 ( Pt 4): p. 719-23. 33. Pushko, P., et al., Influenza virus-like particles comprised of the HA, NA, and M1 proteins of H9N2 influenza virus induce protective immune responses in BALB/c mice. Vaccine, 2005. 23(50): p. 5751-9. 34. Chang, G.R.-L., et al., Production of immunogenic one-component avian H7-subtype influenza virus-like particles. Process Biochem., 2011. 46(6): p. 1292-1298. 35. O''Reilly, D.R., Miller, L. K., Luckow, V. A., Recombinant baculovirus expression vectors, a laboratory manual. 1994(Oxford, UK: Oxford University Press.). 36. Dea, S., et al., Antigenic variant of swine influenza virus causing proliferative and necrotizing pneumonia in pigs. J Vet Diagn Invest, 1992. 4(4): p. 380-92. 37. Hunter, R.L., Overview of vaccine adjuvants: present and future. Vaccine, 2002. 20 Suppl 3: p. S7-12. 38. Maranga, L., T.F. Brazao, and M.J. Carrondo, Virus-like particle production at low multiplicities of infection with the baculovirus insect cell system. Biotechnol Bioeng, 2003. 84(2): p. 245-53. 39. Pan, Y.S., et al., Construction and characterization of insect cell-derived influenza VLP: cell binding, fusion, and EGFP incorporation. J Biomed Biotechnol, 2010. 2010: p. 506363. 40. Song, J.M., et al., Proteomic characterization of influenza H5N1 virus-like particles and their protective immunogenicity. J Proteome Res, 2011. 10(8): p. 3450-9. 41. Krammer, F., et al., Trichoplusia ni cells (High Five) are highly efficient for the production of influenza A virus-like particles: a comparison of two insect cell lines as production platforms for influenza vaccines. Mol Biotechnol, 2010. 45(3): p. 226-34. 42. Krammer, F., et al., Swine-origin pandemic H1N1 influenza virus-like particles produced in insect cells induce hemagglutination inhibiting antibodies in BALB/c mice. Biotechnol J, 2010. 5(1): p. 17-23. 43. Prel, A., G. Le Gall-Recule, and V. Jestin, Achievement of avian influenza virus-like particles that could be used as a subunit vaccine against low-pathogenic avian influenza strains in ducks. Avian Pathol, 2008. 37(5): p. 513-20. 44. Hitchman, R.B., et al., Quantitative real-time PCR for rapid and accurate titration of recombinant baculovirus particles. Biotechnol Bioeng, 2007. 96(4): p. 810-4. 45. Donaldson, M.S. and M.L. Shuler, Effects of long-term passaging of BTI-Tn5B1-4 insect cells on growth and recombinant protein production. Biotechnol Prog, 1998. 14(4): p. 543-7. 46. Galarza, J.M., T. Latham, and A. Cupo, Virus-like particle (VLP) vaccine conferred complete protection against a lethal influenza virus challenge. Viral Immunol, 2005. 18(1): p. 244-51. 47. Arzt, S., et al., Structure of a knockout mutant of influenza virus M1 protein that has altered activities in membrane binding, oligomerisation and binding to NEP (NS2). Virus Res, 2004. 99(2): p. 115-9. 48. Enami, M. and K. Enami, Influenza virus hemagglutinin and neuraminidase glycoproteins stimulate the membrane association of the matrix protein. J Virol, 1996. 70(10): p. 6653-7. 49. Chen, B.J., et al., Influenza virus hemagglutinin and neuraminidase, but not the matrix protein, are required for assembly and budding of plasmid-derived virus-like particles. J Virol, 2007. 81(13): p. 7111-23. 50. Altmann, F., et al., Insect cells as hosts for the expression of recombinant glycoproteins. Glycoconj J, 1999. 16(2): p. 109-23. 51. Tomiya, N., et al., Determination of nucleotides and sugar nucleotides involved in protein glycosylation by high-performance anion-exchange chromatography: sugar nucleotide contents in cultured insect cells and mammalian cells. Anal Biochem, 2001. 293(1): p. 129-37. 52. Stone, P.W., et al., Cost-utility analyses of clinical preventive services: published ratios, 1976-1997. Am J Prev Med, 2000. 19(1): p. 15-23. 53. Kissmann, J., et al., H1N1 influenza virus-like particles: physical degradation pathways and identification of stabilizers. J Pharm Sci, 2011. 100(2): p. 634-45. 54. Delem, A., Serum SRH antibody level as a measure of the immunity against natural and artificial A/Victoria/3/75 infections. Dev Biol Stand, 1977. 39: p. 391-6. 55. Davies, J.R. and E.A. Grilli, Natural or vaccine-induced antibody as a predictor of immunity in the face of natural challenge with influenza viruses. Epidemiol Infect, 1989. 102(2): p. 325-33. 56. Atmar, R.L. and W.A. Keitel, Adjuvants for pandemic influenza vaccines. Curr Top Microbiol Immunol, 2009. 333: p. 323-44.
摘要: 
Vaccination for eliciting neutralization antibody against HA is the major prophylactic strategy to reduce diseases caused by an influenza virus infection. Virus-like particles (VLPs) are looking as a newly promised vaccine candidates due to their lack of viral genetic materials and morphological resemblance to authentic viruses. In this study, we want to develop a subunit vaccine against H6 subtype influenza viruses, which are frequently identified in wild birds or domestic poultry. For this purpose, HA gene from a local influenza strain, A/chicken/Taiwan/2838V/00 (H6N1), was constructed and expressed in Hi-5 insect cells. The results demonstrated that the expression of HA on cell membrane conferred the infected Hi-5 cells with the function to agglutinate erythrocytes. Furthermore, the hemagglutination was also detectable from the medium, which suggested some HA molecules were released into extracellular environment. The infection has been optimized to have a highest HA expression level using the multiplicity of infection (MOI) of 0.001. 20-60% sucrose density gradient ultracentrifugation analysis was demonstrated that these extracellular HA molecules were released in a particle form with the buoyant densities between 1.16-1.21 g/cm3. The existence of HA-VLPs with a size of 80-120nm and the prominent HA spikes were confirmed by electron microscopy. On the other hand, analysis of the HA protein in the intracellular, the hemagglutination was also detectable from the lysate, which suggested HA protein with function were produced in the intracellular. 20-60% sucrose density gradient ultracentrifugation analysis was demonstrated that these intracellular HA molecules were produced in a particle form with the buoyant densities between 1.13-1.17 g/cm3. The existence of HA-VLPs with a size of 80-100nm were confirmed by electron microscopy. The HA-VLPs have function from pH 6-10 down to 37℃. Animal immunization demonstrated that HA-VLPs elicit high titers of hemagglutination inhibition (HI) antibody to protect chickens. This study demonstrated that expression of influenza HA by baculovirus expression system is functional and can form HA-VLPs, and that can protect chicken.

預防流感病毒感染,主要以施打疫苗令接種個體產生對抗HA的中和性抗體為主,似病毒顆粒(virus-like particle) 被視為新一代的流感疫苗,乃因其不具病毒核酸且結構與真實病毒相似,具有安全性與效果佳的優點。本研究目的為利用桿狀病毒表現系統表現H6亞型流感病毒HA似病毒顆粒,並以此開發為防治家禽流行性感冒的次單位疫苗。實驗利用桿狀病毒表現系統在Hi-5昆蟲細胞表現H6N1亞型A/chicken/Taiwan/2838V/00病毒株的HA蛋白,經由血球吸附試驗證實受感染的Hi-5細胞會在細胞膜上表現具有功能的HA蛋白;而在血液凝集試驗發現在胞外培養基具有血球凝集的現象,顯示HA蛋白有被釋放到胞外;以不同病毒感染複數(MOI) 做HA蛋白表現最適化,發現在病毒感染劑量0.001時,HA蛋白會有最佳的表現量;將胞外培養基以20~60%蔗糖梯度離心,發現HA主要分布於浮力密度約為1.16~1.21 g/cm3,顯示HA蛋白可能形成顆粒結構。進一步利用穿透式電子顯微鏡觀察到大小約為80~120nm、帶有HA突刺狀的似病毒顆粒。本研究證實利用桿狀病毒表現系統表現H6亞型流感病毒HA蛋白,可形成帶有活性的似病毒顆粒。另一方面,進一步分析胞內HA蛋白,經由血液凝集試驗發現在胞內HA蛋白具有血球凝集的現象,顯示在胞內也可表現具有功能的HA蛋白;將胞內蛋白以20~60%蔗糖梯度離心,發現HA主要分布於浮力密度1.13~1.17 g/cm3,顯示HA蛋白同樣可能形成顆粒結構。利用穿透式電子顯微鏡觀察到大小約為80~100nm的似病毒顆粒。分析似病毒顆粒耐受性發現,當pH值為6~10、溫度低於37℃時,不影響其活性。動物免疫實驗證實雞隻免疫兩次添加佐劑的HA似病毒顆粒後,皆可產生具保護效果的血球凝集抑制 (HI)抗體。本研究證實利用桿狀病毒表現系統表現H6亞型流感病毒HA蛋白,可形成帶有活性且具保護效果的似病毒顆粒。
URI: http://hdl.handle.net/11455/35819
其他識別: U0005-1508201214132100
Appears in Collections:生物科技學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.