Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3582
標題: 幾丁聚醣及其奈米複合材料於皮膚修復之應用
The evaluation of chitosan and its nanocomposites on wound healing applications
作者: 陳永琇
Chen, Yung-Hsiu
關鍵字: chitosan;幾丁聚醣;aFGF;wound dressing;chitosan-silver nanocomposite;酸性纖維母細胞生長因子;創傷敷料;幾丁聚醣-奈米銀複合材料
出版社: 化學工程學系所
引用: 參考文獻 [1] principles of wound healing, p38 [2] 范如霖,臨床皮膚科學,合記圖書出版社,台北,(1972) [3] Mast BA: Scarless wound healing in the mammalian fetus. Surg Gynecol obstet 1992: 174(5): 441-451 [4] Harding KG, Jones V, Price P: Topical treatment: which dressing to choose. Diabetes Metab Res Rev 2000: 16(suppl 1) : 47-50 [5] Winter GD : Formation of the scab and the rate of epithelialisation of superficial wounds in the skin of the yung domestic pig. Nature 1962: 193: 293-294 [6] Hutchinson JJ, McGuckin M: Occlusive dressings: A microbiologic and clinical review. Am J Infect Control 1990: 18: 257-268 [7] Turner TD: Hospital usage of absorbent dressings. Pharmaceutical J 1979: 222: 421-426 [8] Kannon GA, Garrett AB: Moist wound healing with occlusive dressings. Dermatol Surg 1995 : 21: 583-590 [9] Stashake TS, Farstvedt E, Othic A: Update on wound dressings: Indications and best use. Clin Tech Equine Pract 2004: 3: 148-163 [10] 徐世昌,生物性高分子幾丁質與幾丁聚醣之介紹與應用,化工資訊 2001: 2: 36-45 [11] 江晃榮,新生技產品:幾丁質、幾丁聚醣(甲殼類)產業現況與展望,財團法人生物技術開發中心 1998 [12] Khor E, Lim LY: Implantable applications of chitin and chitosan. Biomaterials 2003: 24: 2339-2349 [13] Ma J, Wang H, He B, Chen J: A preliminary in vitro study on the fabrication and tissue engineering applications of a novel chitosan bilayer material as a scaffold of human fetal dermal fibroblasts. Biomaterials 2001: 22: 331–336 [14] Taravel MN, Domard A: Collagen and its interaction with chitosan II. Inuence of the physicochemical characteristics of collagen. Biomaterials 1995: 16: 865–871 [15] Taravel MN, Domard A: Collagen and its interaction with chitosan III. Some biological and mechanical properties. Biomaterials 1996: 17: 451–455 [16] Shanmugasundaram N, Ravichandran P, Neelakanta RP, Ramamurty N, Subrata P, Panduranga RK: Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials 2001: 22: 1943–1951 [17] Peluso G, Petillo O, Ranieri M, Santin M, Ambrosio L, Calabro D, Avallone B, Balsamo G: Chitosan-mediated stimulation of macrophage function. Biomaterials 1994: 15: 1215-1220 [18] Mori T, Okumura M, Matsuura M, Ueno K, Tokura S, Okamoto Y, Minami S, Fujinaga T: Effects of chitin and its derivatives on the proliferation and cytokine production of fibroblast in vitro. Biomaterials 1997: 18: 947-951 [19] Nishimura K, Nishimura S, Nishi N, Saiki I, Tokura S, Azuma I: Immunological activity of chitin and its derivatives. Vaccine 1984: 2: 93-135 [20] Ono K, Ishihara M, Ozeki Y, Deguchi H, Sato M, Saito Y, Yura H, Sato M, Kikuchi M, Kurita A, Maehara T: Experimental evaluation of photocrosslinkable chitosan as a biological adhesive with surgical application. Surgery 2001: 130: 844–850 [21] Shanmugasundaram N, Ravichandran P, Neelakanta RP, Ramamurty N, Subrata P, Panduranga RK: Collagen-chitosan polymeric scaffolds for the in vitro culture of human epidermoid carcinoma cells. Biomaterials 2001: 22: 1943–1951 [22] Mi FL, Wu YB, Shyu SS, Schoung JY, Huang YB, Tsai YH, Hao1 JY: Control of wound infections using a bilayer chitosan wound dressing with sustainable antibiotic delivery. Inc. J Biomed Mater Res 2002: 59: 438–449 [23] Kweon DK, Song SB, Park YY: Preparation of water-soluble chitosan/heparin complex and its application as wound healing accelerator. Biomaterials 2003: 24: 1595–1601 [24] Peh KK: A preliminary investigation of chitosan film as dressing for punch biopsy wounds in rats. J.P.P.S. 2003: 6(1): 20-26 [25] Cho YW, Cho YN, Chung SH, Yoo G, Ko SW: Water-soluble chitin as a wound healing accelerator. Biomaterials 1999: 20: 2139–45. [26] Yusof NLM, Lim LY, Khor E: Preparation and characterization of chitin beads as a wound dressing precursor. J Biomed Mater Res: 2001: 54: 59–68 [27] Mi FL, Shyu SS, Wu YB, Lee ST, Shyong JY, Huang RN: Fabrication and characterization of a sponge-like asymmetric chitosan membrance as a wound dressing. Biomaterials 2001: 22: 165-173 [28] Mi FL, Wu YB, Shyu SS, Chao AC, Lai JY, Su CC: Asymmetric chitosan membranes prepared by dry/wet phase separation: a new type of wound dressing for controlled antibacterial release. Journal of Membrane Science 2003: 212: 237–254 [29] Azad AK, Sermsintham N, Chandrkrachang S, Stevens WF: Chitosan membrance as a wound-healing dressing characterization and clinical application. J Biomed Mater Res Part B: 2004: 69B: 216-222 [30] Mizuno K, Yamamura K, Yano K, Osada T, Saeki S, Takimoto N, Sakurai T, Nimura Y: Effect of chitosan film containing basic fibroblast growth factor on wound healing in genetically diabetic mice. J Biomed Mater Res 2003: 64A: 177-181 [31] Yan XL, Khor E, Lim LY: Chitosan-alginate film prepared with chitosan of different molecular weights. J Biomed Mater Res 2001: 58B: 358-365 [32] Wang L, Khor E, Wee A, Lim LY: Chitosan-alginate PEC membrance as a wound dressing: Assessment of incisional wound healing. J Biomed Mater Res 2002: 63B: 610-618 [33] Ono K, Ishihara M, Ozeki Y, Deguchi H, Sato M, Saito Y, Yura H, Sato M, Kikuchi M, Kurita A, Maehara T: Experimental evaluation of photocrosslinkable chitosan as a biological adhesive with surgical application. Surgery 2001: 130: 844–850 [34] Ishihara M, Nakanishi K, Ono K, Sato M, Kikuchi M, Saito Y, Yura H, Matsui T, Hattori H, Uenoyama M, Kurita A: Photocrosslinkable chitosan as a dressing for wound occlusion and accelerator in healing process. Biomaterials 2002: 833-840 [35] Obara K, Ishihara M, Ishizuka T, Fujita M, Ozeki Y, Maehara T, Saito Y, Yura H, Matsui T, Hattori H, Kikuchi M, Kurita A: Photocrosslinkable chitosan hydrogel containing fibroblast growth factor-2 stimulates wound healing in healing-impaired db/db mice. Biomaterials 2003: 24: 3437–3444 [36] Lai HL, Khalil AA, Craig DQM: The preparation and characterization of drug-loaded alginate and chitosan sponges. Inter. J Pharm 2003: 251: 175-181 [37] Wang YC, Lin MC, Wang DM, Hsieh HJ: Fabrication of a novel porous PGA-chitosan hybride matrix for tissue engineering. Biomaterials 2003: 24: 1047–1057 [38] Jorge-Herrero E, Fernandez P, Turnay J: Influence of different chemical cross-linking treatments on the properties of bovine pericardium and collagen. Biomaterials 1999: 20: 539–45 [39] Dee KC, Puleo DA, Bizios R: Tissue-Biomaterial Interactions, 2002 [40] Gospodarowiczm D, Rudland P, Lindstrom J, and Benirschke K : Fibroblast growth factor: localization, purification, mode of action, and physiological significance. Nobel Symposium on Growth Factors. Adv. Metab. Dis 1975: 8: 302-335 [41] 鄭琮霖,鹼性纖維母細胞生長因子對子宮上皮細胞死亡之影響,成功大學碩士論文,民 90 [42] 陳秀梅,纖維母細胞生長因子-9 在人類子宮內膜的表現及功能的調控機制,成功大學碩士論文,民 91 [43] Chellaiah A, McEwen DG, Werner S, Xu J, Ornitz DM: Fibroblast growth factor receptor (FGFR) 3. J Bio Chem 1994: 269: 11620-11627 [44] Szebenyi G, and Fallon JF: Fibroblast growth factors as multifunctional signaling factors. Int. Rev. Cytol 1999: 185: 45-106 [45] Ikemotoa M, Hasegawab K, Kiharad Y, Iwakurac A, Komeda M, Yamazato A, Fujita M: Development of enzyme-linked immunosorbent assay for acidic fibroblast growth factor and clinical application. Clinica Chimica Acta 1999: 283:171-182 [46] Middaugh CR, Volkin DB, Thomas KA: Acidic and basic fibroblast growth factor. Curr Opin Invest Drugs 1993: 2:991-1005 [47] Shipley GD, Keeble WW, Hendrickson JE, Coffey RJ, Pittelkow MR: Growth of normal human keratinocytes and fibroblasts in serum-free medium is stimulated by acidic and basic fibroblast growth factor. J Cell Physiol 1989: 138: 511-518 [48] Dubertret L, Brunner-Ferber F, Misiti J, Thomas KA, Dubretret ML: Activities of human acidic fibroblast growth factor in an in vitro dermal equivalent model. J Invest Dermal 1991: 97: 793-798 [49] Thomas KA, Candelore MR, Gimenez-Gallego G, Disalvo J, Bennett C, Rodkey J, Fitzpatrick S: Pure brain-derived acidic fibroblast growth factor is a potent angiogenic vascular endothelial cell mitogen with sequence homology to interleukin 1. Proc Natl Acad Sci USA 1985: 82: 6409-6413 [50] Miller-Davis S, McKeehan W, Carpenter G: Prostatropin and acidic FGF also support proliferation of an EGF-dependent keratinocyte cell line. Exp Cell Res 1998: 179: 595-599 [51] Fredj-Reygrobellet D, Plouet J, Delayre Th, Baudouni Ch, Bourret F, and Lapalus Ph: Effects of aFGF and bFGF on wound healing in rabbit corneas. Curr Eye Res 1987: 6: 1205-1209 [52] Lobb RR, Alderman EM, Fett JW: Induction of angiogenesis by bovine brain-derived class I heparin-binding growth factor. Biochemistry 1985: 24: 4969-4973 [53] Mellin TN, Mennie RT, Cashen DE, Ronan JJ, Capparella J, James ML, Disalvo J, Frank J, Linemeyer D, Gimenez-Gallego G, Thomas KA: Acidic fibroblast growth factor accelerates dermal wound healing. Growth Factors: 1992: 7: 1-14 [54] Mellin TN, Cashen DE, Ronan JJ, Murphy BS, Disalvo J, and Thomas KA: Acidic fibroblast growth factor accelerates dermal wound healing in diabetic mice. J Invest Dermatol 1995: 104: 850-855 [55] Buckley A, Davidson JM, Kamerath CD, Wolt TB, Woodward SC: Sustained release of epidermal growth factor accelerates wound repair. Proc Natl Acad Sci USA 1985: 82: 7340–7344 [56] Grotendorst GR, Martin D, Pencev D, Sedek J, Harvey AK: Stimulation of granulation tissue formation by platelet-derived growth factor in normal and diabetic rats. J Clin Invest 1985: 76: 2323–2329 [57] Lynch SE, Nixon JC, Colvin RB, Antoniades HN: Role of platelet-derived growth factor in wound healing: synergistic effects with other growth factors. Proc Natl Acad Sci USA 1987: 84: 7696–7700 [58] Mustoe TA, Pierce GF, Thomason A, Gramates P, Sporn MB, Deuel TF: Accelerated healing of incisional wounds in rats induced by transforming growth factor-b. Science 1987: 237: 1333–1336 [59] Lee AC, Leem H, Lee J, Park KC: Reversal of silver sulfadiazine-impaired wound healing by epidermal growth factor. Biomaterials 2005: 26: 4670-4676 [60] Akita S, Akino K, Imaizumi T, Hirano A: A basic fibroblast growth factor improved the quality of skin grafting in burn patients. Burns 2005: 31: 855-858 [61] 姜忠義、成國祥編著,奈米生物科技,五南圖書 2004 [62] 馮榮豐、陳錫添編著,奈米工程概論,全華科技圖書 2003 [63] 張立德編著,奈米材料,五南圖書 2002 [64] 朱屯、王福明、王習東編著,奈米材料技術,五南圖書 2003 [65] 徐國財、張立德編著,奈米複合材料,五南圖書 2004 [66] Radheshkumar C, Münstedt H : Morphology and mechanicalproperties of antimicrobial polyamide/silver composites. [67] Webster TJ, Ergun C, Doremus RH, Siegel RW, Bizios R: Enhanced osteoclast-like cell functions on nanophase ceramics. Biomaterials. 2001: 22: 1327–1333 [68] Gutwein LG, Webster TJ: Increased viable osteoblast density in the presence of nanophase compared to conventional alumina and titania particles. Biomaterials 2004: 25: 4175–4183 [69] Thapa A, Miller DC, Webster TJ, Haberstroh KM: Nano-structured polymers enhance bladder smooth muscle cell function. Biomaterials 2003: 24: 2915–2926 [70] Tourovskaia A, Barber T, Wickes BT, Hirdes D, Grin B, Castner DG, et al: Micropatterns of chemisorbed cell adhesion-repellent films using oxygen plasma etching and elastomeric masks. Langmuir 2002: 19: 4754–4764 [71] Hsu S, Chou CW, Tseng SM: Enhanced thermal and mechanical properties in polyurethane/Au nanocomposites: Macromol Mater Eng 2004: 289: 1096-1101 [72] Hsu Sh, Chou Cw: Enhanced biostability of polyurethane containing gold nanoparticles. Polym Degradation Stab 2004: 85: 675-680 [73] Chou Cw, Hsu Sh, Chang H, Tseng SM, Lin HR: Enhanced thermal and mechanical properties and biostability of polyurethane containing silver nanoparticles.Polymer Degradation and Stability 2006: 91: 1017-1024 [74] Hsu Sh, Tang CM, Tseng HJ: Biocompatibility of poly(ether)urethane-gold nanocomposites. J Biomed Mater Res: Part A 2006 (accepted) [75] Kommireddya DS., Sriramb SM, Lvova YM, Millsa DK: Stem cell attachment to layer-by-layer assembled TiO2 nanoparticle thin films. Biomaterials 2006: 27: 4296–4303 [76] Esumi K, Houdatsu H, Yoshimura T: Antioxidant action by gold-PAMAM dendrimer nanocomposites. Langmuir 2004: 20: 2536-2538 [77] Alt V, Bechert T, Steinr P, Wagener M, Seidel P, Dingeldein E, Domann E, Schnettler R: An in vitro assessment of the antibacterial properties and cytotoxicity of nanoparticulate silver bone cement. Biomaterials 2004: 25: 4383–4391 [78] Mbhele ZH, Salemane MG, Sittert CGCE, Nedeljkovic JM´, Djokovic V, and Luyt AS: Fabrication and characterization of silver-Polyvinyl alcohol nanocomposites. Chem Mater 2003: 15: 5019-5024 [79] Huang H, Yuan Q, Yang X: Preparation and characterization of metal–chitosan nanocomposites. Colloids and Surfaces B: Biointerfaces 2004 39 31–37 [80] Dong Y, Feng SS: Poly(D,L-lactide-co-glycolide)/montmorillonite nanoparticles fororal delivery ofanticancer drugs. Biomaterials 2005:26: 6068–6076 [81] Chen G, Ushida T, Tateishi1 T: Scaffold Design for Tissue Engineering. Macromol Biosci 2002: 2: 67-77 [82] Ma L, Gao C, Mao Z, Zhou J, Shen J, Hu X, Han C: Collagen/chitosan porous scaffolds with improved biostability for skin tissue engineering. Biomaterials 2003: 24: 4833–4841 [83] Shen F, Cui YL, Yao KD, Dong XH: A study on the fabrication of chitosan/gelatin network scaffold for tissue engineering. Polym Int 2000: 49: 1596-1599 [84] Tsuboi DR, Shi CM, Oshita Y, Ogawa H: Endothelin-1 promotes contraction and healing of wounds. J Dermatol Sci 1995: 10(1): 82 [85] Adekogbe I, Ghanem A: Fabrication and characterization of DTBP-crosslinked chitosan scaffolds for skin tissue engineering. Biomaterials 2005: 26: 7241–7250 [86] Jin J, Song M, Hourston DJ: Novel chitosan-based films crosslinked by genipin with improved physical properties. Biomacromolecules 2004: 5: 162–8 [87] LeRoux MA, Guilak F, Setton LA: Compressive and shear properties of alginate gel: Effects of sodium ions and alginate concentration. J Biomed Mater Res 1999: 47: 46-53 [88] Lee SB, Kim YH, Chong MS, Lee YM: Preparation and characteristics of hybrid scaffolds composed of β-chitin and collagen. Biomaterials 2004: 25: 2309–2317 [89] Yang F, Nelson GL: PMMA/Silica nanocomposite studies: Synthesis and properties. J Appl PolymSci 2004: 91: 3844-3850 [90] Mbhele ZH, Salemane MG, Sittert CGCE, Nedeljkovic JM, Djokovic V, and Luyt AS: Fabrication and characterization of silver-polyvinyl alcohol nanocomposites. Chem Mater 2003: 15: 5019-5024 [91] Dalby M, Giannaras D, Riehle M, Gadegaard N, Affrossman S, Curtis A: Rapid fibroblast adhesion to 27 nm high polymer demixed nano-topography. Biomaterials 2004: 25: 77-83 [92] Dalby M, Yarwood S, Riehle M, Johnstone H, Affrossman S, Curtis A: Increasing fibroblast response to materials using nanotopography: morphological and genetic measurements of cell response to 13-nm-high polymer demixed islands. Exp Cell Res 2002: 276: 1-9 [93] Esumi K, Takei N, Yoshimura t: Antioxidant-potentiality of gold-chitosan nanocomposites. Colloid Surface B 2003: 32: 117-123 [94] Esumi K, Houdatsu H, Yoshimura T: Antioxidant action by gold-PAMAM dendrimer nanocomposites. Langmuir 2004: 20: 2536-2538 [95] Mao J, Zhao L, Yao K, Shang Q, Yang G2 Cao Y: Study of novel chitosan-gelatin artificial skin in vitro. J Biomed Mater Res 2003: 64A: 301–308
摘要: 
中文摘要
本研究首先將幾丁聚醣溶液利用冷凍乾燥方法製得具孔洞之塊材,再以戊二醛(glutaradehyde, GA)進行交聯反應製備出具有多孔性海綿狀結構之幾丁聚醣創傷敷料,且含入可持續釋放之酸性纖維母細胞生長因子(acidic fibroblast growth factor, aFGF),測試敷料之吸水率、機械強度、表面型態,隨後進行天竺鼠傷口癒合之動物實驗。並以台鹽膠原蛋白敷料Skin Temp®做為對照組。實驗結果顯示幾丁聚醣創傷敷料之吸水率較對照組為佳,且吸水率及機械強度隨著幾丁聚醣濃度增加而增加,1 wt%幾丁聚醣創傷敷料孔洞大小會由交聯前之150 µm於交聯後變為大約245 µm,而1.5 wt%則變為355 µm。於體內動物實驗結果發現添加aFGF具有顯著刺激傷口修復,同時於動物實驗結果發現,含aFGF之幾丁聚創傷敷料之組織再生速度優於對照組,經組織學也證實在傷口上使用幾丁聚醣創傷敷料含入aFGF明顯加速天竺鼠傷口之上皮化。本研究使用此1 wt%及1.5 wt%幾丁聚醣支架作為皮膚組織工程用途,結果中顯示兩種濃度之支架皆適用於組織工程皮膚之應用開發。接著進一步探討幾丁聚醣奈米複合材料應用的可行性,本研究製備出幾丁聚醣混摻不同尺寸之奈米銀粒子(Ag # 1, 45 nm; Ag # 2, 25 nm)及濃度(Ag # 1, 30-240 ppm; Ag # 2, 10-120 ppm),並於體外實驗測試其複合材料之尺寸、分散性、機械性質、熱性質、表面型態、細胞相容性、自由基清除效率、抗菌性和type I collagen基因表現,經TEM結果得知奈米銀粒子(Ag # 1)粒徑約為45 nm,而(Ag # 2)粒徑約為25 nm,並且當奈米銀粒子(Ag # 1)與(Ag # 2)添加濃度低於120 ppm時,奈米銀粒子皆可均勻分散於幾丁聚醣基材中,但當奈米銀粒子(Ag # 1)濃度增加至240 ppm時,奈米銀粒子出現些微聚集現象,而幾丁聚醣-奈米銀(Ag # 1)與(Ag # 2)複合材料之熱性質與機械性質會隨奈米銀濃度增加而上升,但當奈米銀粒子(Ag # 1)濃度增加至240 ppm時,熱性質與機械性質則會下降,因適量奈米銀粒子(Ag # 1, 60 ppm; Ag # 2 30 ppm)添加於幾丁聚醣基材內部扮演成核劑之角色,導致平滑且均勻分布結晶之形成,進而有較好的自由基清除效率、細胞增生與type I collagen之產生,此外於抗菌測試結果中,抗菌性會隨奈米銀濃度上升而上升,且奈米銀粒子(Ag # 2)之抗菌性會優於奈米銀粒子(Ag # 1)。





關鍵字:幾丁聚醣、酸性纖維母細胞生長因子、創傷敷料、幾丁聚醣-奈米銀複合材料

Abstract
In this study, the porous chitosan sponges scaffold designed for the use of a wound dressing were successfully prepared by employing a combination of freeze drying and GA cross-linking. Furthermore, sustained release of acidic fibroblast growth factor(aFGF)was achieved by incorporated chitosan sponges scaffold. The swelling capacity, mechanical strength, morphology and animal tests of the chitosan wound dressing were investigated. Beside the control used the collagen wound dressing, Skin Temp®, by Taiwan salt biotechnology company. The water absorption and mechanical strength increased with the increased concentration of chitosan. The mean pore size increased from 150µm, the uncress-linked, to about 250-350µm, the cross-linked scaffold. The chitosan sponges containing aFGF showed a significant effect on improving wound healing and tissue repair than control. Histological examination also has demonstrated an advanced epithelialization in wound treated with aFGF incorporated chitosan sponge scaffold in guinea pigs.We also have prepared the nanocomposites of chitosan incorporated with different size (Ag # 1, 45 nm and Ag # 2, 25 nm) and amounts (Ag # 1, 30-240 ppm and Ag # 2, 10-120 ppm) of Ag nanoparticles. The nanoparticle sizes, dispersion, thermal stability, mechanical properties, surface morphology, biocompatibility, free radical scavenging ability, antibacterial properties and type I collagen gene expression of nanocomposites were characterized in vitro. Ag of contents 30-120 ppm (Ag # 1) and 10-120 ppm (Ag # 2) exhibited a homogeneous dispersion in chitosan matrix. However, when the content of Ag increased to 240 ppm, the particles tended to form aggregates. The thermostability and mechanical properties of the nanocomposites increased with Ag contents up to 120 ppm. The small amounts of Ag in the chitosan matrix could act as nucleation site for enhancing the uniform crystallization of the nanocomposites. The better biocompatibility, free radical scavenging effect and type I collagen were associated with the surface morphological change in the presence of Ag.


Key words: chitosan, aFGF, wound dressing, chitosan-silver nanocomposite
URI: http://hdl.handle.net/11455/3582
其他識別: U0005-2408200612031400
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.