Please use this identifier to cite or link to this item:
標題: 利用微矩陣分析百合LLA23在葡萄糖、乾燥與高溫條件下對阿拉伯芥轉殖株的影響
The effect of lily LLA23 on Arabidopsis transgenic plants under glucose, desiccation and high temperature conditions using microarray analysis
作者: 鐘緯璟
Chung, Wei-Ching
關鍵字: 鐵砲百合ASR;Lily ASR;乾燥;葡萄糖;高溫;微矩陣;即時定量聚合酵素連鎖反應;drought;glucose;heat;microarray;Q-PCR
出版社: 生物科技學研究所
引用: 游叔娟 (2009) I、鐵砲百和早期花藥專一性基因之特性分析;II、ASR基因提供擬南芥轉殖株不同的抗逆境。國立中興大學生物科技學研究所碩士論文。 楊靜瑩 (2006) 擬南芥轉殖株中百合LLA23蛋白參與離層酸和葡萄糖訊息傳遞及耐旱抗鹽特性。國立中興大學生物科技學研究所博士論文。 Acevedo-Hernandez G. J., Leon P., and Herrera-Estrella L. R. (2005) Sugar and ABA responsiveness of a minimal RBCS light-responsive unit is mediated by direct binding of ABI4. Plant J. 43, 506-519 Agarwal P., Kapoor S., and Tyagi A. K. (2011) Transcription factors regulating the progression of monocot and dicot seed development. Bioessays 33, 189-202 Arenas-Huertero F., Arroyo A., Zhou L., Sheen J., and Leon P. (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev. 14, 2085-2096 Arenhart R. A., Lima J. C., Pedron M., Carvalho F. E., Silveira J. A., Rosa S. B., Caverzan A., Andrade C. M., Schunemann M., Margis R., and Margis-Pinheiro M. (2012) Involvement of ASR genes in aluminum tolerance mechanisms in rice. Plant Cell Environ. doi: 10.1111/j.1365-3040.2012.02553.x. [Epub ahead of print] Aroca R., Amodeo G., Fernandez-Illescas S., Herman E. M., Chaumont F., and Chrispeels M. J. (2005) The role of aquaporins and membrane damage in chilling and hydrogen peroxide induced changes in the hydraulic conductance of maize roots. Plant Physiol. 137, 341–353 Ali G. M. and Komatsu S. (2006) Proteomic analysis of rice leaf sheath during drought stress. J. Proteome Res. 5, 396-403 Atkinson N. J. and Urwin P. E. (2012) The interaction of plant biotic and abiotic stresses: from genes to the field. J. Exp. Bot. 63, 3523-3543 Bar-Tzur A., Rudich J., and Bravdo B. (1985) High temperature effects on CO2 gas exchange in heat tolerant and sensitive tomatoes. J. Amer. Soc. Hort. Sci. 110, 582–586 Bolle C. (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218, 683-692 Bolstad B. M., Irizarry R. A., Astrand M., and Speed T. P. (2003) A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics 19, 185-193 Bossi F., Cordoba E., Dupre P., Mendoza M. S., Roman C. S., and Leon P. (2009) The Arabidopsis ABA-INSENSITIVE (ABI) 4 factor acts as a central transcription activator of the expression of its own gene, and for the induction of ABI5 and SBE2.2 genes during sugar signaling. Plant J. 59, 359-374 Bray E. A., Bailey-Serres J., and Weretilnyk E. (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds.) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, pp 1158-1203 Brocard-Gifford I., Lynch T. J., Garcia M. E., Malhotra B., and Finkelstein R. R. (2004) The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16, 406-421 Cakir B., Agasse A., Gaillard C., Saumonneau A., Delrot S., and Atanassova R. (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15, 2165–2180 Canel C., Bailey-Serres J. N., and Roose M. L. (1995) Pummelo fruit transcript homologous to ripening-induced genes. Plant Physiol. 108, 1323–1324 Carrari F., Fernie A. R., and Iusem N. D. (2004) Heard it through the grapevine? ABA and sugar cross-talk: the ASR story. Trends Plant Sci. 9, 57–59 Catala R., Ouyang J., Abreu I. A., Hu Y., Seo H., Zhang X., and Chua N. H. (2007) The Arabidopsis E3 SUMO ligase SIZ1 regulates plant growth and drought responses. Plant Cell 19, 2952-2966 Chang S., Puryear J., and Cairney J. (1993) A simple and efficient method for isolating RNA from Pine Trees. Plant Mol. Bio. 11, 113-116 Chang S., Puryear J. D., Dias M. A. D. L., Funkhauser E. A., Newton R. G., and Cairney J. (1996) Gene expression under water deficit in loblolly pine (Pinus taeda L.): Isolation and characterization of cDNA clones. Physiol. Plant. 97, 139–148 Charron J. B., Ouellet F., Houde M., and Sarhan F. (2008) The plant Apolipoprotein D ortholog protects Arabidopsis against oxidative stress. BMC Plant Biol. 8, 86 Chen J. Y., Liu D. J., Jiang Y. M., Zhao M. L., Shan W., Kuang J. F., and Lu W. J. (2011) Molecular characterization of a strawberry FaASR gene in relation to fruit ripening. PLoS. One. 6, e24649 Chen Y., Ji F., Xie H., Liang J., and Zhang J. (2006) The regulator of G-protein signaling proteins involved in sugar and abscisic acid signaling in Arabidopsis seed germination. Plant Physiol. 140, 302-310 Cheng W. H., Endo A., Zhou L., Penney J., Chen H. C., Arroyo A., Leon P., Nambara E., Asami T., Seo M., Koshiba T., and Sheen J. (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14, 2723-2743 Chinnusamy V., Ohta M., Kanrar S., Lee B. H., Hong X., Agarwal M., and Zhu J. K. (2003) ICE1: a regulator of cold-induced transcriptome and freezing tolerance in Arabidopsis. Genes Dev. 17, 1043–1054 Chinnusamy V., Schumaker K., and Zhu J. K. (2004) Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. J. Exp. Bot. 55, 225-236 Coello P., Hirano E., Hey S. J., Muttucumaru N., Martinez-Barajas E., Parry M. A., and Halford N. G. (2012) Evidence that abscisic acid promotes degradation of SNF1-related protein kinase (SnRK) 1 in wheat and activation of a putative calcium-dependent SnRK2. J. Exp. Bot. 63, 913-924 Dat J. F., Foyer C. H., and Scott I. M. (1998a) Changes in salicylic acid and antioxidants during induced thermotolerance in mustard seedlings. Plant Physiol. 118, 1455-1461 Dat J. F., Lopez-Delgado H., Foyer C. H., and Scott I. M. (1998b) Parallel changes in H2O2 and catalase during thermotolerance induced by salicylic acid or heat acclimation in mustard seedlings. Plant Physiol. 116, 1351-1357 David P. Dixon and Robert Edwards (2010) Glutathione Transferases. Arabidopsis Book 8, e0131 Davletova S., Schlauch K., Coutu J., and Mittler R. (2005) The zinc-finger protein Zat12 plays a central role in reactive oxygen and abiotic stress signaling in Arabidopsis. Plant Physiol. 139, 847–856 Dekkers B. J., Schuurmans J. A., and Smeekens S. C. (2004) Glucose delays seed germination in Arabidopsis thaliana. Planta 218, 579-588 Dekkers B. J., Schuurmans J. A., and Smeekens S. C. (2008) Interaction between sugar and abscisic acid signalling during early seedling development in Arabidopsis. Plant Mol. Biol. 67, 151-167 Delessert C., Kazan K., Wilson I. W., Van Der Straeten D., Manners J., Dennis E. S., and Dolferus R. (2005) The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J. 43, 745–757 Foyer C. H., Kerchev P. I., and Hancock R. D. (2012) The ABA-INSENSITIVE-4 (ABI4) transcription factor links redox, hormone and sugar signaling pathways. Plant Signal Behav. 7, 276-281 Frank G., Pressman E., Ophir R., Althan L., Shaked R., Freedman M., Shen S., and Firon N. (2009) Transcriptional profiling of maturing tomato (Solanum lycopersicum L.) microspores reveals the involvement of heat shock proteins, ROS scavengers, hormones, and sugars in the heat stress response. J. Exp. Bot. 60, 3891-3908 Frankel N., Carrari F., Hasson E., and Iusem N. D. (2006) Evolutionary history of the Asr gene family. Gene 378, 74–83 Fujii H., Verslues P. E., and Zhu J. K. (2011) Arabidopsis decuple mutant reveals the importance of SnRK2 kinases in osmotic stress responses in vivo. Proc. Natl. Acad. Sci. U S A 108, 1717-1722 Fujita M., Fujita Y., Maruyama K., Seki M., Hiratsu K., Ohme-Takagi M., Tran L. S. P., Yamaguchi-Shinozaki K., and Shinozaki K. (2004) A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39, 863–876 Garbers C., DeLong A., Deruere J., Bernasconi P., and Soll D. (1996) A mutation in protein phosphatase 2A regulatory subunit A affects auxin transport in Arabidopsis. EMBO J. 15, 2115-2124 Gilad A., Amitai-Zeigerson H., Bar-Zvi D., and Scolnik P.A. (1997). ASR1, a tomato water stress-regulated gene: Genomic organization, developmental regulation and DNA-binding activity. Acta. Hortic. 447, 441–453 Giorno F., Wolters-Arts M., Grillo S., Scharf K., Vriezen W. H., and Mariani C. (2010) Developmental and heat stress-regulated expression of HsfA2 and small heat shock proteins in tomato anthers. J. Exp. Bot. 61, 453–462 Gong M., Li Y. J., and Chen S. Z. (1998) Abascisic acid-induced thermotoler- ance in maize seedlings is mediated by calcium and associated with antioxidant systems. J. Plant Physiol. 153, 488-496 Gong Z., Koiwa H., Cushman M. A., Ray A., Bufford D., Kore-eda S., Matsumoto T. K., Zhu J., Cushman J. C., Bressan R. A., and Hasegawa P. M. (2001) Genes that are uniquely stress regulated in salt overly sensitive (sos) mutants. Plant Physiol. 126, 363-375 Guan J. C., Yeh C. H., Lin Y. P., Ke Y. T., Chen M. T., You J. W., Liu Y. H., Lu C. A., and Wu S. J., Lin C. Y. (2010) A 9 bp cis-element in the promoters of class I small heat shock protein genes on chromosome 3 in rice mediates L-azetidine-2-carboxylic acid and heat shock responses. J. Exp. Bot. 61, 4249-4261 Guan Y. and Nothnagel E. A. (2004) Binding of arabinogalactan proteins by Yariv phenylglycoside triggers wound-like responses in Arabidopsis cell cultures. Plant Physiol 135, 1346-1366 Hanin M., Brini F., Ebel C., Toda Y., Takeda S., and Masmoudi K. (2011) Plant dehydrins and stress tolerance: versatile proteins for complex mechanisms. Plant Signal. Behav. 6, 1503-1509 Heckathorn S. A., Downs C. A., Sharkey T. D., and Coleman J. S. (1998) The small, methionine-rich chloroplast heat-shock protein protects photosystem II electron transport during heat stress Plant Physiol. 116, 439-444 Hiwatashi Y., Obara M., Sato Y., Fujita T., Murata T., and Hasebe M. (2008) Kinesins are indispensable for interdigitation of phragmoplast microtubules in the moss Physcomitrella patens. Plant Cell 20, 3094-3106 Hsu Y. F., Yu S. C., Yang C. Y., and Wang C. S. (2011) Lily ASR protein-conferred cold and freezing resistance in Arabidopsis. Plant Physiol. Biochem. 49, 937-945 Hu Y. F., Li Y. P., Zhang J., Liu H., Tian M., and Huang Y. (2012) Binding of ABI4 to a CACCG motif mediates the ABA-induced expression of the ZmSSI gene in maize (Zea mays L.) endosperm. J. Exp. Bot. 63, 5979-5989 Huang G. T., Ma S. L., Bai L. P., Zhang L., Ma H., Jia P., Liu J., Zhong M., and Guo Z. F. (2012) Signal transduction during cold, salt, and drought stresses in plants. Mol. Biol. Rep. 39, 969-987 Huang J. C., Lin S. M., and Wang C. S. (2000) A pollen-specific and desiccationassociated transcript in Lilium longiflorum during development and stress. Plant Cell Physiol. 41, 477–485 Huang Y., Li C. Y., Pattison D. L., Gray W. M., Park S., and Gibson S. I. (2010) SUGAR-INSENSITIVE3, a RING E3 ligase, is a new player in plant sugar response. Plant Physiol. 152, 1889-1900 Hubbard K. E., Nishimura N., Hitomi K., Getzoff E. D., and Schroeder J. I. (2010) Early abscisic acid signal transduction mechanisms: newly discovered components and newly emerging questions. Genes Dev. 24, 1695-1708 Iusem N. D., Bartholomew D. M., Hitz W. D., and Scolnik P. A. (1993) Tomato (Lycopersicon esculentum) transcript induced by water deficit and ripening. Plant Physiol. 102, 1353–1354 Jang J. C., Leon P., Zhou L., and Sheen J. (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9, 5-19 Javot H. and Maurel C. (2002) The role of aquaporins in root water uptake. Ann. Bot. 90, 301-313 Jenks M. and Hasegawa P. (2005) Plant abiotic stress. Blackwell publishing, Oxford Jha B., Lal S., Tiwari V., Yadav S. K., and Agarwal P. K. (2012) The SbASR-1 Gene Cloned from an Extreme Halophyte Salicornia brachiata Enhances Salt Tolerance in Transgenic Tobacco. Mar. Biotechnol. (NY) Jin X. F., Xiong A. S., Peng R. H., Liu J. G., Gao F., Chen J. M., and Yao Q. H. (2010) OsAREB1, an ABRE-binding protein responding to ABA and glucose, has multiple functions in Arabidopsis. BMB Rep. 43, 34-39 Kalifa Y., Perlson E., Gilad A., Konrad Z., Scolnik P. A., and Bar-Zvi D. (2004) Over-expression of the water and salt stress-regulated Asr1 gene confers an increased salt tolerance. Plant Cell Environ. 27, 1459–1468 Kampinga H. H., Brunsting J. F., Stege G. J., Burgman P. W., and Konings A. W. (1995) Thermal protein denaturation and protein aggregation in cells made thermotolerant by various chemicals: role of heat shock proteins. Exp. Cell Res. 219, 536-546 Kartal O., Mahlow S., Skupin A., and Ebenhoh O. (2011) Carbohydrate-active enzymes exemplify entropic principles in metabolism. Mol. Syst. Biol. 7, 542 Kim J. B., Kang J. Y., and Kim S. Y. (2004) Over-expression of a transcription factor regulating ABA-responsive gene expression confers multiple stress tolerance. Plant Biotechnol. J. 2, 459-466 Konrad Z. and Bar-Zvi D. (2008) Synergism between the chaperone-like activity of the stress regulated ASR1 protein and the osmolyte glycine-betaine. Planta 227, 1213–1219 Kotak S., Vierling E., Baumlein H., and von Koskull-Doring P. (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19, 182-195 Krasensky J. and Jonak C. (2012) Drought, salt, and temperature stress-induced metabolic rearrangements and regulatory networks. J. Exp. Bot. 63, 1593-1608 Kreps J. A., Wu Y., Chang H. S., Zhu T., Wang X., and Harper J. F. (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130, 2129-2141 Lao N. T., Long D., Kiang S., Coupland G., Shoue D. A., Carpita N. C., and Kavanagh T. A. (2003) Mutation of a family 8 glycosyltransferase gene alters cell wall carbohydrate composition and causes a humidity-sensitive semi-sterile dwarf phenotype in Arabidopsis. Plant Mol. Biol. 53, 647-661 Larcher W. (2003) Physiological plant ecology, 4th edn. Springer. Larkindale J. and Knight M. R. (2002) Protection against heat stress-induced oxidative damage in Arabidopsis involves calcium, abscisic acid, ethylene, and salicylic acid. Plant Physiol. 128, 682-695 Lee D. J., Park J. Y., Ku S. J., Ha Y. M., Kim S., Kim M. D., Oh M. H., and Kim J. (2007) Genome-wide expression profiling of ARABIDOPSIS RESPONSE REGULATOR 7 (ARR7) overexpression in cytokinin response. Mol. Genet. Genomics 277, 115-137 Lee S., Cheng H., King K. E., Wang W., He Y., Hussain A., Lo J., Harberd N. P., and Peng J. (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev. 16, 646-658 Lee S. A., Yoon E. K., Heo J. O., Lee M. H., Hwang I., Cheong H., Lee W. S., Hwang Y. S., and Lim J. (2012) Analysis of Arabidopsis glucose insensitive growth Mutants Reveals Involvement of the Plastidial Copper Transporter PAA1 in Glucose-induced Intracellular Signaling. Plant Physiol. 159, 1001-1012 Lejay L., Gansel X., Cerezo M., Tillard P., Muller C., Krapp A., von Wiren N., Daniel-Vedele F., and Gojon A. (2003) Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell 15, 2218-2232 Levitt J. (1972) Responses of plants to environmental stresses. Academic Press, New York Li A., Zhang Z., Wang X. C., and Huang R. (2009) Ethylene response factor TERF1 enhances glucose sensitivity in tobacco through activating the expression of sugar-related genes. J. Integr. Plant Biol. 51, 184-193 Li Y., Lee K. K., Walsh S., Smith C., Hadingham S., Sorefan K., Cawley G., and Bevan M. W. (2006) Establishing glucose- and ABA-regulated transcription networks in Arabidopsis by microarray analysis and promoter classification using a Relevance Vector Machine. Genome Res. 16, 414-427 Liu H. Y., Dai J. R., Feng D. R., Liu B., Wang H. B., and Wang J. F. (2010) Characterization of a novel plantain Asr gene, MpAsr, that is regulated in response to infection of Fusarium oxysporum f. sp. cubense and Abiotic Stresses. J. Integr. Plant Biol. 52, 315–323 Ma H. S., Liang D., Shuai P., Xia X. L., and Yin W. L. (2010) The salt- and drought-inducible poplar GRAS protein SCL7 confers salt and drought tolerance in Arabidopsis thaliana. J. Exp. Bot. 61, 4011-4019 Magyar-Tabori K., Mendler-Drienyovszki N., and Dobranszki J. (2011) Models and tools for studying drought stress responses in peas. Omics. 15, 829-838 Maqbool A., Abbas W., Rao A. Q., Irfan M., Zahur M., Bakhsh A., Riazuddin S., and Husnain T. (2010) Gossypium arboreum GHSP26 enhances drought tolerance in Gossypium hirsutum. Biotechnol. Prog. 26, 21-25 Matiolli C. C., Tomaz J. P., Duarte G. T., Prado F. M., Del Bem L. E., Silveira A. B., Gauer L., Correa L. G., Drumond R. D., Viana A. J., Di Mascio P., Meyer C., and Vincentz M. (2011) The Arabidopsis bZIP gene AtbZIP63 is a sensitive integrator of transient abscisic acid and glucose signals. Plant Physiol. 157, 692-705 Matsukura S., Mizoi J., Yoshida T., Todaka D., Ito Y., Maruyama K., Shinozaki K., and Yamaguchi-Shinozaki K. (2010) Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in the expression of abiotic stress-responsive genes. Mol. Genet. Genomics. 283, 185-196 Mbeguie A., Mbeguie D., Gomez R. M., and Fils-Lycaon B. (1997) Molecular cloning and nucleotide sequence of an abscisic acid-stress-ripening induced (ASR)-like protein from apricot fruit (accession No. U82760). Gene expression during fruit ripening (PGR 97–161). Plant Physiol. 115, 1288 Menges M., de Jager S. M., Gruissem W., and Murray J. A. (2005) Global analysis of the core cell cycle regulators of Arabidopsis identifies novel genes, reveals multiple and highly specific profiles of expression and provides a coherent model for plant cell cycle control. Plant J. 41, 546-566 Merkouropoulos G. and Shirsat A. H. (2003) The unusual Arabidopsis extensin gene atExt1 is expressed throughout plant development and is induced by a variety of biotic and abiotic stresses. Planta 217, 356-366 Miura K., Lee J., Jin J. B., Yoo C. Y., Miura T., and Hasegawa P. M. (2009) Sumoylation of ABI5 by the Arabidopsis SUMO E3 ligase SIZ1 negatively regulates abscisic acid signaling. Proc. Natl. Acad. Sci. U S A. 106, 5418-5423 Moore B., Zhou L., Rolland F., Hall Q., Cheng W. H., Liu Y. X., Hwang I., Jones T., and Sheen J. (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300, 332-336 Nakashima K., Fujita Y., Katsura K., Maruyama K., Narusaka Y., Seki M., Shinozaki K., and Yamaguchi-Shinozaki K. (2006) Transcriptional regulation of ABI3- and ABA-responsive genes including RD29B and RD29A in seeds, germinating embryos, and seedlings of Arabidopsis. Plant Mol. Biol. 60, 51-68 Nakatsubo T., Mizutani M., Suzuki S., Hattori T., and Umezawa T. (2008) Characterization of Arabidopsis thaliana pinoresinol reductase, a new type of enzyme involved in lignan biosynthesis. J. Biol. Chem. 283, 15550-15557 Nishizawa A., Yabuta Y., Yoshida E., Maruta T., Yoshimura K., and Shigeoka S. (2006) Arabidopsis heat shock transcription factor A2 as a key regulator in response to several types of environmental stress. Plant J. 48, 535–547 Orellana S., Yanez M., Espinoza A., Verdugo I., Gonzalez E., Ruiz-Lara S., and Casaretto J. A. (2010) The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ. 33, 2191–2208 Padmanabhan V., Dias D. M. A. L., and Newton R. J. (1997) Expression analysis of a gene family in a loblolly pine (Pinus taeda L.) induced by water deficit stress. Plant Mol. Biol. 35, 801–807 Pan Y., Seymour G. B., Lu C., Hu Z., Chen X., and Chen G. (2012) An ethylene response factor (ERF5) promoting adaptation to drought and salt tolerance in tomato. Plant Cell Rep. 31, 349-360 Park J., Lee N., Kim W., Lim S., and Choi G. (2011) ABI3 and PIL5 collaboratively activate the expression of SOMNUS by directly binding to its promoter in imbibed Arabidopsis seeds. Plant Cell 23, 1404-1415 Peet M. M., Willits D. H., and Gardner R. (1997) Response of development and post-pollen production processes in sterile tomatoes to chronic sub-acute high temperature stress. J. Exp. Bot. 48, 101–111 Peng X. X., Tang X. K., Zhou P. L., Hu Y. J., Deng X. B., He Y., Wang H. H. (2011) Isolation and expression patterns of rice WRKY82 transcription factor gene responsive to both biotic and abiotic stresses. Agricultural Sciences in China 10, 893–901 Piskurewicz U., Jikumaru Y., Kinoshita N., Nambara E., Kamiya Y., and Lopez-Molina L. (2008) The gibberellic acid signaling repressor RGL2 inhibits Arabidopsis seed germination by stimulating abscisic acid synthesis and ABI5 activity. Plant Cell 20, 2729-2745 Piskurewicz U., Tureckova V., Lacombe E., and Lopez-Molina L. (2009) Far-red light inhibits germination through DELLA-dependent stimulation of ABA synthesis and ABI3 activity. EMBO J. 28, 2259-2271 Pressman E., Peet M. M., and Pharr D. M. (2002) The effect of heat stress on tomato pollen characteristics is associated with changes in carbohydrate concentration in developing anthers. Ann. Bot. 90, 631–636 Price J., Laxmi A., Saint Martin S., and Jang J. C. (2004). Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16, 2128–2150 Price J., Li T. C., Kang S. G., Na J. K., and Jang J. C. (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol. 132, 1424-1438 Qin F., Kakimoto M., Sakuma Y., Maruyama K., Osakabe Y., Tran L. S., Shinozaki K., and Yamaguchi-Shinozaki K. (2007) Regulation and functional analysis of ZmDREB2A in response to drought and heat stresses in Zea mays L. Plant J. 50, 54-69 Qiu Y. P. and Yu D. Q. (2009) Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environ. Exp. Bot. 65, 35–47 Ramon M., Rolland F., and Sheen J. (2008) Sugar sensing and signaling. Arabidopsis Book 6, e0117 Riccardi F., Gazeau P., de Vienne D., and Zivy M. (1998) Protein changes in response to progressive water deficit in maize. Plant Physiol. 117, 1253–1263 Rizhsky L., Davletova S., Liang H. J., and Mittler R. (2004a) The zinc finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J. Biol. Chem. 279, 11736–11743 Rizhsky L., Liang H., Shuman J., Shulaev V., Davletova S., and Mittler R. (2004b) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134, 1683-1696 Rodriguez-Gacio M. del C., Matilla-Vazquez M. A., and Matilla A. J. (2009) Seed dormancy and ABA signaling: The breakthrough goes on. Plant Signal Behav. 4, 1035–1049 Rolland F., Baena-Gonzalez E., and Sheen J. (2006) Sugar sensing and signaling in plants: conserved and novel mechanisms. Annu. Rev. Plant Biol. 57, 675-709 Rook F., Hadingham S. A., Li Y., and Bevan M. W. (2006) Sugar and ABA response pathways and the control of gene expression. Plant Cell Environ. 29, 426-434 Rossi M., Lijavetzky D., Bernacchi D., Hopp H. E., and Iusem N. (1996) Asr genes belong to a gene family comprising at least three closely linked loci on chromosome 4 in tomato. Mol. Gen. Genet. 252, 489-492 Sambrook J. E., Fritisch E.T., and Maniatis R. (1989) Molecular cloning: A laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York Sanchez-Fernandez R., Davies T. G., Coleman J. O., and Rea P. A. (2001) The Arabidopsis thaliana ABC protein superfamily, a complete inventory. J. Biol. Chem. 276, 30231-30244 Saumonneau A., Agasse A., Bidoyen M. T., Lallemand M., Cantereau A., Medici A., Laloi M., and Atanassova R. (2008) Interaction of grape ASR proteins with a DREB transcription factor in the nucleus. FEBS Lett. 582, 3281-3287 Saumonneau A., Laloi M., Lallemand M., Rabot A., and Atanassova R. (2012) Dissection of the transcriptional regulation of grape ASR and response to glucose and abscisic acid. J. Exp. Bot. 63, 1495-1510 Sato S., Peet M. M., and Thomas J. F. (2002) Determining critical pre- and post-anthesis periods and physiological processes in Lycopersicon esculentum Mill exposed to moderately elevated temperatures. J. Exp. Bot. 53, 1187–1195 Schlereth A., Moller B., Liu W., Kientz M., Flipse J., Rademacher E. H., Schmid M., Jurgens G., and Weijers D. (2010) MONOPTEROS controls embryonic root initiation by regulating a mobile transcription factor. Nature 464, 913-916 Seki M., Ishida J., Narusaka M., Fujita M., Nanjo T., Umezawa T., Kamiya A., Nakajima M., Enju A., Sakurai T., Satou M., Akiyama K., Yamaguchi-Shinozaki K., Carninci P., Kawai J., Hayashizaki Y., and Shinozaki K. (2002) Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct. Integr. Genomics 2, 282-291 Sels J., Mathys J., De Coninck B. M., Cammue B. P., and De Bolle M. F. (2008) Plant pathogenesis-related (PR) proteins: a focus on PR peptides. Plant Physiol. Biochem. 46, 941-950 Serna L. (2011) Stomatal development in Arabidopsis and grasses: differences and commonalities. Int. J. Dev. Biol. 55, 5-10 Serrano R., Mulet J. M., Rios G., Marquez J. A., de Larrinoa I. F., Leube M. P., Mendizabal I., Pascual-Ahuir A., Proft M., Ros R., and Montesinos C. (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J. Exp. Bot. 50, 1023–1036 Seveno M., Seveno-Carpentier E., Voxeur A., Menu-Bouaouiche L., Rihouey C., Delmas F., Chevalier C., Driouich A., and Lerouge P. (2010) Characterization of a putative 3-deoxy-D-manno-2-octulosonic acid (Kdo) transferase gene from Arabidopsis thaliana. Glycobiology 20, 617-628 Shen G., Pang Y., Wu W., Deng Z., Liu X., Lin J., Zhao L., Sun X., and Tang K. (2005) Molecular cloning, characterization and expression of a novel Asr gene from Ginkgo biloba. Plant Physiol. Biochem. 43, 836-843 Shimono M., Sugano S., Nakayama A., Jiang C. J., Ono K., Toki S., and Takatsuji H. (2007) Rice WRKY45 plays a crucial role in benzothiadiazole-inducible blast resistance. Plant Cell 19, 2064-2076 Shinozaki K. and Yamaguchi-Shinozaki K. (2007) Gene networks involved in drought stress response and tolerance. J. Exp. Bot. 58, 221–227 Shinozaki K., Yamaguchi-Shinozaki K., and Seki M. (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6, 410-417 Shkolnik D. and Bar-Zvi D. (2008) Tomato ASR1 abrogates the response to abscisic acid and glucose in Arabidopsis by competing with ABI4 for DNA binding. Plant Biotechnol. J. 6, 368-378 Simpson S. D., Nakashima K., Narusaka Y., Seki M., Shinozaki K., and Yamaguchi-Shinozaki K. (2003) Two different novel cis-acting elements of erd1, a clpA homologous Arabidopsis gene function in induction by dehydration stress and dark-induced senescence. Plant J. 33, 259-270 Song J., Nada K., and Tachibana S. (2002) Suppression of Sadenosylmethionine decarboxylase activity is a major cause for high temperature inhibition of pollen germination and tube growth in tomato (Lycopersicon esculentum Mill.). Plant and Cell Physiol. 43, 619–627 Sun C., Palmqvist S., Olsson H., Boren M., Ahlandsberg S., and Jansson C. (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugar-responsive elements of the iso1 promoter. Plant Cell 15, 2076-2092 Sun J. Y., Gaudet D. A., Lu Z. X., Frick M., Puchalski B., and Laroche A. (2008) Characterization and antifungal properties of wheat nonspecific lipid transfer proteins. Mol. Plant Microbe. Interact. 21, 346-360 Sun W., Bernard C., van de Cotte B., Van Montagu M., and Verbruggen N. (2001) At-HSP17.6A, encoding a small heat-shock protein in Arabidopsis, can enhance osmotolerance upon overexpression. Plant J. 27, 407–415 Tatematsu K., Ward S., Leyser O., Kamiya Y., and Nambara E. (2005) Identification of cis-elements that regulate gene expression during initiation of axillary bud outgrowth in Arabidopsis. Plant Physiol. 138, 757-766 Tezara W., Mitchell V. J., Driscoll S. D., and Lawlor D. W. (1999). Water stress inhibits plant photosynthesis by decreasing coupling factor and ATP. Nature 401, 914-917 Tompa P. (2002) Intrinsically unstructured proteins. Trends Biochem. Sci. 27, 527-533 Vaidyanathan R., Kuruvilla S., and Thomas G. (1999) Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant Sci. 140, 21–30 van de Mortel J. E., Almar Villanueva L., Schat H., Kwekkeboom J., Coughlan S., Moerland P. D., Ver Loren van Themaat E., Koornneef M., and Aarts M. G. (2006) Large expression differences in genes for iron and zinc homeostasis, stress response, and lignin biosynthesis distinguish roots of Arabidopsis thaliana and the related metal hyperaccumulator Thlaspi caerulescens. Plant Physiol. 142, 1127-1147 Vierling E. (1991) The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42, 579–620 Vigneault F., Lachance D., Cloutier M., Pelletier G., Levasseur C., and Seguin A. (2007) Members of the plant NIMA-related kinases are involved in organ development and vascularization in poplar, Arabidopsis and rice. Plant J. 51, 575-588 Virlouvet L., Jacquemot M. P., Gerentes D., Corti H., Bouton S., Gilard F., Valot B., Trouverie J., Tcherkez G., Falque M., Damerval C., Rogowsky P., Perez P., Noctor G., Zivy M., and Coursol S. (2011) The ZmASR1 protein influences branched-chain amino acid biosynthesis and maintains kernel yield in maize under water-limited conditions. Plant Physiol. 157, 917-936 Vogel J. T., Zarka D. G., Van Buskirk H. A., Fowler S. G., and Thomashow M. F. (2005) Roles of the CBF2 and ZAT12 transcription factors in configuring the low temperature transcriptome of Arabidopsis. Plant J. 41, 195–211 Wang C. S., Liau Y. E., Huang J. C., Wu T. D., Su C. C., and Lin C. H. (1998) Characterization of a desiccation-related protein in lily pollen during development and stress. Plant Cell Physiol. 39, 1307–1314 Wang C. S., Walling L. L., Eckard K. J., and Lord E. M. (1992) Immunological characterization of a tapetal protein in developing anthers of Lilium longiflorum. Plant Physiol. 99, 822–829 Wang C. S., Wu T. D., Chung C. K. W., and Lord E. M. (1996) Two classes of pollenspecific, heat-stable proteins in Lilium longiflorum. Physiol. Plant. 97, 643–650 Wang H. J., Hsu C. M., Jauh G.Y., and Wang C. S. (2005) A lily pollen ASR protein localizes to both cytoplasm and nuclei requiring a nuclear localization signal. Physiol. Plant. 123, 314-320 Wang S. J., Ho C. H., and Chen H. W. (2011) Rice develop wavy seminal roots in response to light stimulus. Plant Cell Rep. 30, 1747-1758 Wang W., Vinocur B., and Altman A. (2003) Plant responses to drought, salinity and extreme temperatures: towards genetic engineering for stress tolerance. Planta 218, 1–14 Wang Y., Zhang W. Z., Song L. F., Zou J. J., Su Z., and Wu W. H. (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol. 148, 1201-1211 Wang Y. J., Zhang Z. G., He X. J., Zhou H. L., Wen Y. X., Dai J. X., Zhang J. S., and Chen S. Y. (2003) A rice transcription factor OsbHLH1 is involved in cold stress response. Theor. Appl. Genet. 107, 1402-1409 Wataru Y., Ko N., Kouki H., and Ichiro T. (2010) Phenotypic plasticity in photosynthetic temperature acclimation among crop species with different cold tolerances. Plant Physiol. 152, 388-399 Xia N., Zhang G., Liu X. Y., Deng L., Cai G. L., Zhang Y., Wang X. J., Zhao J., Huang L. L., and Kang Z. S. (2010) Characterization of a novel wheat NAC transcription factor gene involved in defense response against stripe rust pathogen infection and abiotic stresses. Mol. Biol. Rep. 37, 3703-3712 Xiao W., Sheen J., and Jang J. C. (2000) The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol. Biol. 44, 451-461 Yamaguchi-Shinozaki K. and Shinozaki K. (2005) Organization of cis-acting regulatory elements in osmotic- and cold-stress-responsive promoters. Trends Plant Sci. 10, 88-94 Yamaguchi-Shinozaki K. and Shinozaki K. (2006) Transcriptional regulatory networks in cellular responses and tolerance to dehydration and cold stresses. Annu. Rev. Plant Biol. 57, 781-803 Yang C. Y., Wu C. H., Jauh G. Y., Huang J. C., Lin C. C., and Wang C. S. (2008) The LLA23 protein translocates into nuclei shortly before desiccation in developing pollen grains and regulates gene expression in Arabidopsis. Protoplasma 233, 241–254 Yang C. Y., Chen Y. C., Jauh G. Y., and Wang C. S. (2005) A Lily ASR protein involves abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Pl
LLA23為鐵砲百合 (Lilium longiflorum Tumb. cv. Snow Queen) 花粉中屬於ABA-, stress-, and ripening-induced (ASR) 蛋白質的一員,在花粉發育成熟的乾燥時期會大量累積。由於35S::LLA23轉殖株乾燥、高鹽、高溫及低溫環境下展現其耐受性的能力,本研究進一步以微矩陣方法分析葡萄糖及高溫逆境下,比較野生株及35S::LLA23轉殖株整體基因的變化。將2週大的轉殖株與野生株以3 %葡萄糖或在39 ˚C下處理,萃取轉殖株及野生株的總量RNA,以進行微矩陣分析。即時定量聚合酵素連鎖反應分析不同的基因,符合微矩陣所顯示的mRNA層次上之變化。探討30個受逆境影響的基因啟動子,顯示所有基因均受到兩個以上不同的逆境或荷爾蒙調控區的影響,並且發現有尚未被鑑定新的cis-elements存在於啟動子中。本研究由探討在LLA23、葡萄糖、乾燥和高溫下正調控的基因,並描述這些訊息傳遞網絡交流對話和差異性的基因表現,有16個基因對不同的逆境處理都能反應,而高度表現的基因也能在不同的逆境處理找到。即時定量聚合酵素連鎖反應的分析,證實這些基因在各逆境條件下確實被高度誘導。另外,植株在不同的逆境下,也呈現許多負調控或反向調控的基因,更突顯出逆境複雜的訊息傳遞網絡。即時定量聚合酵素連鎖反應分析35S::LLA23轉殖株中離層酸及糖類反應相關的基因,顯示35S::LLA23轉殖株在高糖之下,離層酸生合成、代謝及訊息傳遞相關基因的表現量均比野生株來得少,此結果和35S::LLA23轉殖株為離層酸不敏感型一致。LLA23會影響HXK1依賴型和HXK1不依賴型的離層酸訊息傳遞路徑。綜合以上探討結果,說明LLA23透過複雜的訊息傳遞網路調節基因的表現,以因應多重逆境的影響。

LLA23, a member of abscisic acid-, stress-, and ripening-induced (ASR) family protein previously isolated from lily (Lilium longiflorum) pollen is abundantly accumulated upon desiccation during anther/pollen development. The transgenic plants overexpressing LLA23 exhibit resistance against unfavorably environmental conditions such as drought, salt, heat and cold. In this study, we further used microarray to analyze genome-wide patterns of genes which were altered in the wild-type and 35S::LLA23E plants under 3 % glucose and heat treatments. Two-week-old seedlings of wild-type and 35S::LLA23 plants were treated with 3 % glucose conditions or heated at 39˚C. Total RNA was extracted from wild-type and transgenic seedlings and prepared for microarray analysis. Quantitative real-time PCR (Q-PCR) analyses confirmed the changes in mRNA levels of selected genes observed in microarray. Promoter analysis of 30 define ASR-responsive genes showed that all of these genes had at least two regulatory elements in response to stress or hormones, and new cis-element responsive to a specific stress existed in their promoters. We investigated genes induced by LLA23, 3% glucose, drought and heat stresses, and described the signaling network of cross-talk and differential gene expression. While 16 genes were found to respond to LLA23, glucose, and two different stress conditions, highly-expressed genes existed in each condition confirmed by Q-PCR analysis. In addition, the existence of many down-regulated genes or genes that responded to one condition but adversely responded to another different condition further outstanded the complicated network of signaling transduction. Q-PCR analysis of ABA- and sugar-regulated genes in the 35S::LLA23 plants revealed that all genes had lower expression levels of mRNA in 35S::LLA23 than in wild-type seedlings. It is consistent with ABA insensitive nature of 35S::LLA23 plants. LLA23 affects both HXK- dependent and HXK-independent ABA signaling pathway. In all, LLA23 may regulate various gene expression through complicate signaling transduction network in response to multiple stresses.
其他識別: U0005-2701201317073100
Appears in Collections:生物科技學研究所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.