Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3586
標題: 微溝槽聚乳酸導管在周邊神經再生的應用
Microgrooved polylactide conduits for peripheral nerve regeneration
作者: 蘇千香
Su, Chien-Hsiang
關鍵字: nerve repair;神經修復;neural stem cells;microgrooved surface;神經幹細胞;微溝槽
出版社: 化學工程學系所
引用: 1. Hole JW, Koos. JKA. Human Anatomy 藝軒圖書出版社; 2001. 2. Vander AJ, James H, Sherman, Luciano DS. Human Physiology: 合記圖書出版社; 1999. 3. Kandel ER, Schwartz JH, Jessell TM. Principle of Neural Science: McGraw Hill 2000. 4. Lundborg G. Nerve Injury and Repair: Churchill Livingstone 1988. 5. Seddon H. Surgical of Disorders of the Peripheral Nerves: Williams and Wilkins; 1975. 6. Sunderland S. Nerves and Nerve Injuries: Churchill Livingstone; 1981. 7. Kim B. Peripheral nerve regeneration. Methods of Tissue Engineering 2002:1135-1142. 8. Millesi H. Techniques for nerve grafting. Hand Clin 2000;16: 73-91. 9. 陳悅生. 想換條新的神經嗎?神經再生. 科學發展 2002;356:26-29. 10. Evans G. Challenges to nerve regeneration. Semin Surg Oncol 2000;19:312-318. 11. Belkas J, Shoichet M, Midha R. Peripheral nerve regeneration through guidance tubes. Neurol Res 2004;26:151-160. 12. Mohammad J, Shenaq J, Rabinovsky E, Shenaq S. Modulation of peripheral nerve regeneration : a tissue-engineering approach. The role of amnion tube nerve conduit across a 1-centimeter nerve gap. Plast Reconstr Surg 2001;107:622-623. 13. Kiyotani T, Teramachi M, Takimoto Y, Nakamura T, Shimizu Y, Endo K. Nerve regeneration across a 25-mm gap bridged by a polyglycolic acid-collagen tube: a histological and electrophysiological evaluation of regenerated nerves. Brain Res 1996;740:66-74. 14. Matsumoto K, Ohnishi K, Kiyotani T, Sekine T, Ueda H, Nakamura T, Endo K, Shimizu Y. Peripheral nerve regeneration across an 80-mm gap bridged by a polyglycolic acid (PGA)-collagen tube filled with laminin-coated collagen fibers: a histological and electrophysiological evaluation of regenerated nerves. Brain Res 2000;868:315-328. 15. Maquet V, Martin D, Malgrange B, Franzen R, Schoenen J, Moonen G, Jerome R. Peripheral nerve regeneration using bioresorbable macroporous polylactide scaffolds. J Biomed Mater Res 2000;52:639-651. 16. Evans G, Brandt K, Katz S, Chauvin P, Otto L, Bogle M, Wang B, Meszlenyi R, Lu L, Mikos A, Patrick CJ. Bioactive poly(L-lactic acid) conduits seeded with Schwann cells for peripheral nerve regeneration. Biomaterials 2002;23:841-848. 17. Sundback C, Hadlock T, Cheney M, Vacanti J. Manufacture of porous polymer nerve conduits by a novel low-pressure injection molding process. Biomaterials 2003;24:819-830. 18. Bender M, Bennett J, Waddell R, Doctor J, Marra K. Multi-channeled biodegradable polymer/CultiSpher composite nerve guides. Biomaterials 2004;25:1269-1278. 19. Ahmed M, Venkateshwarlu U, Jayakumar R. Multilayered peptide incorporated collagen tubules for peripheral nerve repair. Biomaterials 2004;25:2585-2594. 20. Stang F, Fansa H, Wolf G, Reppin M, Keilhoff G. Structural parameters of collagen nerve grafts influence peripheral nerve regeneration. Biomaterials 2005;26:3038-3091. 21. Xie F, Li Q, Zhao L. Study on using a new biodegradable conduit to repairing rat''s peripheral nerve defect Zhonghua Zheng Xing Wai Ke Za Zhi 2005;21(4):295-298. 22. Chang C, Hsu S, Lin F, Chang H, Chang C. Low-intensity-ultrasound-accelerated nerve regeneration using cell-seeded poly(D,L-lactic acid-co-glycolic acid) conduits: an in vivo and in vitro study. J Biomed Mater Res B Appl Biomater 2005;75(1):99-107. 23. Lee D, Park J, Zhu S, Kim B, Huh J, Lee S, Jung J, Kim S. Nerve regeneration with the use of a poly(l-lactide-co-glycolic acid)-coated collagen tube filled with collagen gel. J Craniomaxillofac Surg 2006;34(1):50-56. 24. Inada Y, Morimoto S, Takakura Y, Nakamura T. Regeneration of peripheral nerve gaps with a polyglycolic acid-collagen tube. Neurosurgery 2004;55:640-646. 25. 劉家菁. 利用電漿技術進行聚酯類表面生物相容性改質. Surface biocompatibility modification by plasma treatment of polyester scaffolds. 大同大學碩士論文 2004. 26. Piskin E. Plasma processing of biomaterials. J Biomater Sci Polym Ed 1992;4(1):45-60. 27. Ma Z, He W, Yong T, Ramakrishna S. Grafting of gelatin on electrospun poly(caprolactone) nanofibers to improve endothelial cell spreading and proliferation and to control cell Orientation. Tissue Eng 2005;11(7-8):1149-1158. 28. Barbier V, Tatoulian M, Li H, Arefi-Khonsari F, Ajdari A, Tabeling P. Stable Modification of PDMS Surface Properties by Plasma Polymerization: Application to the Formation of Double Emulsions in Microfluidic Systems. Langmuir 2006 22(12):5230-5232. 29. Parenteau N. Cells. WTEC Panel Panel Report on Tissue Engineering Research. International Technology Research Institute Baltimore 2002:19-32. 30. Jessen K, Mirsky R. Embryonic Schwann cells development:the biology of Schwann cells precursors and early Schwann cells. J Anat 1997;191:501-505. 31. 宋濤, 佟曉傑. 史旺細胞與周圍神經再生,Schwann cells and peripheral nerve regeneration. 解剖科學進展Progress of anatomical sciences 2000;1:27-30. 32. Frostick S, Yin Q, Kemp G. Schwann cells. neurotrophic factors, and peripheral nerve regeneration. Microsurgery 1998;18:397-405. 33. Feneley M, Fawcett J, Keynes R. The role of Schwann cells in the regeneration of peripheral nerve axons through muscle basal lamina grafts. Exp Neurol 1991;114:275-285. 34. Torigoe K, Tanaka H, Takahashi A, Awaya A, Hashimoto K. Basic behavior of migratory Schwann cells in peripheral nerve regeneration. Exp Neurol 1996;137:301-308. 35. Guenard V, Kleitman N, Morrissey T, Bunge R, Aebischer P. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J Neurosci 1992;12:3310-3320. 36. Miller C, Jeftinija S, Mallapragada S. Micropatterned Schwann cell-seeded biodegradable polymer substrates significantly enhance neurite alignment and outgrowth. Tissue Eng 2001;7:705-715. 37. Teng Y, Lavik E, Qu X, Park K, Ourednik J, Zurakowski D, Langer R, Snyder E. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc Natl Acad Sci U S A 2002;99(5):3024-3029. 38. Lu P, Jones L, Snyder E, Tuszynski M. Neural stem cells constitutively secrete neurotrophic factors and promote extensive host axonal growth after spinal cord injury. Exp Neurol 2003;181(2):115-129. 39. Baez J, Gajavelli S, Thomas C, Grumbles R, Aparicio B, Byer D, Tsoulfas P. Embryonic cerebral cortex cells retain CNS phenotypes after transplantation into peripheral nerve. Exp Neurol 2004;189(2):422-425. 40. Ito Y. Surface micropatterning to regulate cell functions. Biomaterials 1999;20:2333-2342. 41. Matsuda T, Sugawara T. Control of cell adhesion, migration, and orientation on photochemically microprocessed surfaces. J Biomed Mater Res 1996t;32:165-173. 42. Walboomers X, Ginsel L, Jansen J. Early spreading events of fibroblasts on microgrooved substrates. J Biomed Mater Res 2000;51:529-534. 43. Yoshinari M, Matsuzaka K, Inoue T, Oda Y, Shimono M. Effects of multigrooved surfaces on fibroblast behavior. J Biomed Mater Res A 2003;65:359-368. 44. Kam L, Shain W, Turner J, Bizios R. Correlation of astroglial cell function on micro-patterned surfaces with specific geometric parameters. Biomaterials 1999;20:2343-2350. 45. Miller C, Shanks H, Witt A, Rutkowski G, Mallapragada S. Oriented Schwann cell growth on micropatterned biodegradable polymer substrates. Biomaterials 2001;22:1263-1269. 46. 陳俊宇. 微溝槽表面結合ECM改質於許旺細胞排序之生長之影響,The effect of microgrooved and ECM modified surfaces on the alignment of Schwann cells. 中興大學碩士論文 2003. 47. Recknor J, Recknor J, Sakaguchi D, Mallapragada S. Oriented astroglial cell growth on micropatterned polystyrene substrates. Biomaterials 2004;25:2753-2767. 48. Vleggeert-Lankamp C, Pego A, Lakke E, Deenen M, Marani E, Thomeer R. Adhesion and proliferation of human Schwann cells on adhesive coatings. Biomaterials 2004;25:2741-2751. 49. 方秀斌. 神經
摘要: 
細胞的排列在周邊神經修復是有重要的影響。本研究利用具備微溝槽之聚乳酸材料導引神經幹細胞排列,經由細胞生長及貼附分析,發現與平滑膜細胞生長數目並無明顯差異。經由細胞形態觀察可發現,在平滑膜上細胞生長無特定方向且形態較為攤開,而在微溝槽表面上細胞明顯沿溝槽方向生長且形態較為細長。分析細胞的排序角,結果發現微溝槽明顯助於細胞排列,且培養72小時後之效果較24小時為佳。製備聚乳酸導管進行神經幹細胞動態植覆並進行動物實驗,六週後進行分析,在腓腸肌重量各組間並無差異,在SFI以微溝槽導管結合神經幹細胞為最佳。以組織切片看來,矽膠導管修復的效果比預期佳,實驗組看來以微溝槽導管結合神經幹細胞修復最佳,再來為微溝槽空管組最後為平滑空導管。
另一方面,將微溝槽PLA材料利用電漿活化接枝寡幾丁聚醣(oligo-chitosan)進行表面改質,經過表面官能基分析,發現改質過之表面出現N-H基團,而C=O基團則下降。接觸角分析結果顯示改質後的PLA表面比未改質來的親水。在改質過的表面培養神經幹細胞發現排序程度較未改質的表面來的好,在72小時排序程度可達到92%。

The oriented cells could benefit for peripheral nerve regeneration. The polylactide (PLA) microgrooved surface was used to align neural stem cells. Cell proliferation on smooth and microgrooved surfaces was similar. The morphology of neural stem cells on smooth PLA film was spread with random orientation. Cells were aligned with long and thin cell bodies on the PLA microgrooved surface. By analyzing the orientation angles, the percent alignment of neural stem cells on microgrooved surface was 75% at 24 h and reached 80% at 72 h.
PLA conduit seeded dynamically with neural stem cells were implanted in rat sciatic nerves and analyzed after 6 weeks. The change of muscle weight was not significantly different among all groups. Using SFI from walking track analysis as an index, the microgrooved PLA conduit seeded with neural stem cells lead to the best performance. From histological data, tissue repair within the microgrooved PLA conduit seeded with neural stem cells was greater than that in smooth conduit or in the PLA micrgrooved conduit without cells.
On the other hand, oligo-chitosan was grafted onto the microgrooved PLA surface after plasma treatment. The appearance of N-H groups and the decrease in C=O groups on the modified surface were demonstrated by ATR-IR spectra. The modified surface was more hydrophilic than the original surface shown by contact angle measurement. Neural stem cells cultured on the modified surface were more aligned than on the original surface. The percent alignment reached 92% at 72 h.
URI: http://hdl.handle.net/11455/3586
其他識別: U0005-2408200616542600
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.