Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/35864
標題: 阿拉伯芥中調控細胞分裂與配子體發育相關基因之功能性分析
Functional analysis of genes regulating cell division and gametophyte development in Arabidopsis
作者: 許巍瀚
Hsu, Wei-Han
關鍵字: Arabidopsis;阿拉伯芥;cell division;flowering;gametophyte;細胞分裂;開花;配子體
出版社: 生物科技學研究所
引用: chapter 1 Avasarala S, Yang J, Caruso1 JL. (1996) Production of phenocopies of the lanceolate mutant in tomato using polar auxin transport inhibitors. J Exp Bot. 47: 709-712 Baker SJ. (2003) Small unstable apoptotic protein, an apoptosis-associated protein, suppresses proliferation of myeloid cells. Cancer Res. 63: 705-712 Benfey PN, Schiefelbein JW. (1994) Getting to the root of plant development: The genetic of Arabidopsis root formation. Trends Genet. 10: 84-88. Borton MK, Poethig RS. (1993) Formation of shoot apical meristem in Arabidopsis thaliana: an analysis of development in the wild type and in the shoot meristemless mutant. Development 119: 823-831. Carnero A, Hannon GJ. (1998) The INK4 family of CDK inhibitors. Curr Top Microbiol Immunol. 227: 43-55 Cockcroft CE, den Boer BG, Healy JM, Murray JA. (2000) Cyclin D control of growth rate in plants. 405: 575-579 Farlie P, Reid C, Wilcox S, Peeters J, Reed G, Newgreen D. (2001) Ypel1: a novel nuclear protein that induces an epithelial-like morphology in fibroblasts. Genes Cells 6: 619-629 Dolan L, Janmaat K, Willemsen V, Linstead P, Poethig S, Roberts K, Scheres B. (1993) Cellular organization of the Arabidopsis thaliana root. Development 119: 71-84. Hanahan D, Jessee J, Bloom FR. (1991) Plasmid transformation of Escherichia coli and other bacteria. Methods Enzymol. 204: 63-113 Hengst L, Reed SI. (1998) Inhibitors of the Cip/Kip family. Curr Top Microbiol Immunol. 227: 25-41 Hochegger H, Takeda S, Hunt T. (2008) Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nat Rev Mol Cell Biol. 9: 910-916 Hofgen R, Willmitzer L. (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res. 16: 9877 Hosono K, Noda S, Shimizu A, Nakanishi N, Ohtsubo M, Shimizu N, Minoshima S. (2010) YPEL5 protein of the YPEL gene family is involved in the cell cycle progression by interacting with two distinct proteins RanBPM and RanBP10. Genomics 96: 102-111 Hosono K, Sasaki T, Minoshima S, Shimizu N. ( 2004) Identification and characterization of a novel gene family YPEL in a wide spectrum of eukaryotic species. Gene 340: 31-43 Joubes J, Chevalier C, Dudits D, Heberle-Bors E, Inze D, Umeda M, Renaudin JP. (2000) CDK-related protein kinases in plants. Plant Mol Biol. 43: 607-620 Kelley KD, Miller KR, Todd A, Kelley AR, Tuttle R, Berberich SJ. (2010) YPEL3, a p53-regulated gene that induces cellular senescence. Cancer Res. 70: 3566-3575 Kerk NM, Feldman JL. (1995) A biochemical model for the initiation and maintenance of the quiescent center: Implications for organization of root meristems. Development 121: 2825-2833. Laufs P, Grandjean O, Jonak C, Kieˆu K, Traas, J. (1998) Cellular Parameters of the Shoot Apical Meristem in Arabidopsis. Plant Cell 10: 1375-1390. McNellis TW, Deng XW. (1995) Light control of seedling morphogenetic pattern. Plant Cell 7: 1749-1761. Medford JI. (1992) Vegetative apical meristems. Plant Cell 4: 1029-1039. Meyerowitz EM. (1997) Genetic control of cell division patterns in developing plants. Cell 88: 299-308. Morgan DO. (1995) Principles of CDK regulation. Nature. 374: 131-134 Murashige T, Skoog F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol plant 15: 473-479 Nagata T, Nemoto Y, Hasezawa S. (1992) Tobacco BY-2 cell line as the "HeLa" cell in the cell biology of higher plants. Int Rev Cytol. 132: 1-30 Norbury C, Nurse P. (1992) Animal cell cycles and their control. Annu Rev Biochem. 61: 441-470 Pines J. (1995) Cyclins and cyclin-dependent kinases: theme and variations. Adv Cancer Res. 66: 181-212 Roxstrom-Lindquist K, Faye I. ( 2001) The Drosophila gene Yippee reveals a novel family of putative zinc binding proteins highly conserved among eukaryotes. Insect Mol Biol. 10: 77-86 Rubio V, Shen Y, Saijo Y, Liu Y, Gusmaroli G, Dinesh-Kumar SP, Deng XW. (2005) An alternative tandem affinity purification strategy applied to Arabidopsis protein complex isolation. Plant J. 41: 767-778 Sherr CJ, Roberts JM. (1995) Inhibitors of mammalian G1 cyclin-dependent kinases. Genes Dev. 15: 1149-1163 Stals H, Inze D. (2001) When plant cells decide to divide. Trends Plant Sci. 6: 359-364 Stull MA, Rowzee AM, Loladze AV, Wood TL. (2004) Growth factor regulation of cell cycle progression in mammary epithelial cells. J Mammary Gland Biol Neoplasia. 9: 15-26 Talbert PB, Adler HT, Parks DW, Comai L. (1995) The REVOLUTA gene is necessary for apical meristem development and for limiting cell divisions in the leaves and stems of Arabidopsis thatiana. Development 121: 2723-2735. Tamura K, Peterson D, Peterson N, Stecher G, Nei M, and Kumar S (2011) MEGA5: Molecular Evolutionary Genetics Analysis using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution 28: 2731-2739 Tuttle R, Miller KR, Maiorano JN, Termuhlen PM, Gao Y, Berberich SJ. (2011) Novel senescence associated gene, YPEL3, is repressed by estrogen in ER+ mammary tumor cells and required for tamoxifen-induced cellular senescence. Int J Cancer. 13: 2291-2299 Tuttle R, Simon M, Hitch DC, Maiorano JN, Hellan M, Ouellette J, Termuhlen P, Berberich SJ. (2011) Senescence-associated gene YPEL3 is downregulated in human colon tumors. Ann Surg Oncol. 18: 1791-1796 van den Berg C, Willemsen V, Hendriks G, Weisbeek P, Scheres B. (1997) Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390: 287-289. Vermeulen K, Van Bockstaele DR, Berneman ZN. (2003) The cell cycle: a review of regulation, deregulation and therapeutic targets in cancer. Cell Prolif. 36: 131-149 Wang G, Kong H, Sun Y, Zhang X, Zhang W, Altman N, DePamphilis CW, Ma H. (2004) Genome-wide analysis of the cyclin family in Arabidopsis and comparative phylogenetic analysis of plant cyclin-like proteins. Plant Physiol. 135: 1084-1099 Wang H, Zhou Y, Gilmer S, Whitwill S, Fowke LC. (2000) Expression of the plant cyclin-dependent kinase inhibitor ICK1 affects cell division, plant growth and morphology 24: 613-623 Willemsen V, Wolkenfelt H, de Vrieze, G, Weisbeek P, Scheres B. (1998) The HOBBIT gene is required for formation of the root meristem in the Arabidopsis embryo. Development 125: 521-531 Chapter 2 陳星宇 (2007) 洋桔梗與阿拉伯芥中與胚珠分化及花朵發育相關之 MADS box 基因之選殖及功能分析. 國立中興大學生物科技學研究所. 博士論文 葉琮仼 (2010) 阿拉伯芥AGL13基因功能分析及探討其第一個內含子中的調控因子對AGL13表現的影響. 國立中興大學生物科技學研究所. 碩士論文 Alexander MP. (1969) Differential staining of aborted and nonaborted pollen. Stain Technol. 44: 117-122 Bowman JL, Drews GN, Meyerowitz EM. (1991) Expression of the Arabidopsis floral homeotic gene AGAMOUS is restricted to specific cell types late in flower development. Plant Cell 3: 749-758 Busch MA, Bomblies K, Weigel D. (1999) Activation of a floral homeotic gene in Arabidopsis. Science 285: 585-587 Carlsbecker A, Tandre K, Johanson U, Englund M, Engstrom P. (2004). The MADS-box gene DAL1 is a potential mediator of the juvenile-to-adult transition in Norway spruce (Picea abies). Plant J. 40: 546-457 Chang YY, Chiu YF, Wu JW, Yang CH. (2009) Four orchid (Oncidium Gower Ramsey) AP1/AGL9-like MADS box genes show novel expression patterns and cause different effects on floral transition and formation in Arabidopsis thaliana. Plant Cell Physiol. 50: 1425-1438 Coen ES, Meyerowitz EM. (2001) The war of the whorls: genetic interactions controlling flower development. Nature 353: 31-7 de Folter S, Immink RG, Kieffer M, Parenicova L, Henz SR, Weigel D, Busscher M, Kooiker M, Colombo L, Kater MM, Davies B, Angenent GC. (2005). Comprehensive interaction map of the Arabidopsis MADS Box transcription factors. Plant Cell 17: 1424-1433 Ditta G, Pinyopich A, Robles P, Pelaz S, Yanofsky MF. (2004) The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol. 14: 1935-1940 Elangovan M, Wallrabe H, Chen Y, Day RN, Barroso M, Periasamy A. (2003) Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29: 58-73 Favaro R, Pinyopich A, Battaglia R, Kooiker M, Borghi L, Ditta G, Yanofsky MF, Kater MM, Colombo L. (2003) MADS-box protein complexes control carpel and ovule development in Arabidopsis. Plant cell 15: 2603-2011 Fujiki Y, Yoshimoto K, Ohsumi Y. (2007) An Arabidopsis homolog of yeast ATG6/VPS30 is essential for pollen germination. Plant Physiol. 143: 1132-1139 Gomez-Mena C, de Folter S, Costa MM, Angenent GC, Sablowski R. (2005) Transcriptional program controlled by the floral homeotic gene AGAMOUS during early organogenesis. Development 132: 429-438 Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M. (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 35: 733-739 Hsu HF, Huang CH, Chou LT, Yang CH. (2003) Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol. 44: 783-794 Huang H, Mizukami Y, Hu Y, Ma H. (1993) Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucleic Acids Res. 21: 4769-4776 Ishiguro S, Nishimori Y, Yamada M, Saito H, Suzuki T, Nakagawa T, Miyake H, Okada K, Nakamura K. (2010) The Arabidopsis FLAKY POLLEN1 gene encodes a 3-hydroxy-3-methylglutaryl-coenzyme A synthase required for development of tapetum-specific organelles and fertility of pollen grains. Plant Cell Physiol. 51: 896-911 Ito T, Nagata N, Yoshiba Y, Ohme-Takagi M, Ma H, Shinozaki K. (2007) Arabidopsis MALE STERILITY1 encodes a PHD-type transcription factor and regulates pollen and tapetum development. Plant Cell 19: 3549-3562 Ito T, Wellmer F, Yu H, Das P, Ito N, Alves-Ferreira M, Riechmann JL, Meyerowitz EM. (2004) The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 15: 356-360 Kaufmann K, Melzer R, Theissen G. (2005) MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347: 183-98 Koo SC, Bracko O, Park MS, Schwab R, Chun HJ, Park KM, Seo JS, Grbic V, Balasubramanian S, Schmid M, Godard F, Yun DJ, Lee SY, Cho MJ, Weigel D, Kim MC. (2010). Control of lateral organ development and flowering time by the Arabidopsis thaliana MADS-box Gene AGAMOUS-LIKE6. Plant J. 62: 807-816 Li H, Liang W, Hu Y, Zhu L, Yin C, Xu J, Dreni L, Kater MM, Zhang D. (2011). Rice MADS6 interacts with the floral homeotic genes SUPERWOMAN1, MADS3, MADS58, MADS13, and DROOPING LEAF in specifying floral organ identities and meristem fate. Plant Cell 23: 2536-2552 Li H, Liang W, Jia R, Yin C, Zong J, Kong H, Zhang D. (2010). The AGL6-like gene OsMADS6 regulates floral organ and meristem identities in rice. Cell Res. 20: 299-313 Liu J, Zhang Y, Qin G, Tsuge T, Sakaguchi N, Luo G, Sun K, Shi D, Aki S, Zheng N, Aoyama T, Oka A, Yang W, Umeda M, Xie Q, Gu H, Qu LJ. (2008) Targeted degradation of the cyclin-dependent kinase inhibitor ICK4/KRP6 by RING-type E3 ligases is essential for mitotic cell cycle progression during Arabidopsis gametogenesis. Plant Cell 20: 1538-1554 Ma H, Yanofsky MF, Meyerowitz EM. (1991) AGL1-AGL6, an Arabidopsis gene family with similarity to floral homeotic and transcription factor genes. Genes Dev. 5: 484-95 McCormick S. (2004) Control of male gametophyte development. Plant Cell 16: S142–S153 McGonigle B, Bouhidel K, Irish VF. (1996). Nuclear localization of the Arabidopsis APETALA3 and PISTILLATA homeotic gene products depends on their simultaneous expression. Genes Dev. 15: 1812-1821 Melzer R, Wang YQ, Theissen G. (2010). The naked and the dead: the ABCs of gymnosperm reproduction and the origin of the angiosperm flower. Semin Cell Dev Biol. 21: 118-128 Mena M, Mandel MA, Lerner DR, Yanofsky MF, Schmidt RJ. (1995) A characterization of the MADS-box gene family in maize. Plant J. 8: 845-54 Mouradov A, Glassick TV, Hamdorf BA, Murphy LC, Marla SS, Yang Y, Teasdale RD. (1998) Family of MADS-Box genes expressed early in male and female reproductive structures of monterey pine. Plant Physiol. 117: 55-62 Murmu J, Bush MJ, DeLong C, Li S, Xu M, Khan M, Malcolmson C, Fobert PR, Zachgo S, Hepworth SR. (2010). Arabidopsis basic leucine-zipper transcription factors TGA9 and TGA10 interact with floral glutaredoxins ROXY1 and ROXY2 and are redundantly required for anther development. Plant Physiol. 154: 1492-1504 Parenicova L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B, Angenent GC, Colombo L. (2003) Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15: 1538-1551 Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. (2000) B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203 Preuss D, Rhee SY, Davis RW. (1994) Tetrad analysis possible in Arabidopsis with mutation of the QUARTET (QRT) genes. Science 264: 1458-1460 Purugganan MD, Rounsley SD, Schmidt RJ, Yanofsky MF. (1995) Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140: 345-356 Reinheimer R, Kellogg EA. (2009). Evolution of AGL6-like MADS box genes in grasses (Poaceae): ovule expression is ancient and palea expression is new. Plant Cell 21: 2591-2605 Riechmann JL, Wang M, Meyerowitz EM. (1996) DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res. 24: 3134-3141 Rijpkema AS, Zethof J, Gerats T, Vandenbussche M. (2009). The petunia AGL6 gene has a SEPALLATA-like function in floral patterning. Plant J. 60: 1-9 Rounsley SD, Ditta GS, Yanofsky MF. (1995) Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7: 1259-1269 Schauer SE, Schluter PM, Baskar R, Gheyselinck J, Bolanos A, Curtis MD, Grossniklaus U. (2009). Intronic regulatory elements determine the divergent expression patterns of AGAMOUS-LIKE6 subfamily members in Arabidopsis. Plant J. 59: 987-1000 Shindo S, Ito M, Ueda K, Kato M, Hasebe M. (1999) Characterization of MADS genes in the gymnosperm Gnetum parvifolium and its implication on the evolution of reproductive organs in seed plants. Evol Dev. 1: 180-190 Tandre K, Albert VA, Sundas A, Engstrom P. (1995) Conifer homologues to genes that control floral development in angiosperms. Plant Mol Biol. 27: 69-78 Tang X, Zhang ZY, Zhang WJ, Zhao XM, Li X, Zhang D, Liu QQ, Tang WH. (2010). Global gene profiling of laser-captured pollen mother cells indicates molecular pathways and gene subfamilies involved in rice meiosis. Plant Physiol. 154: 1855-1870 Theissen G (2001) Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol. 4: 75-85 Theissen G, Becker A, Di Rosa A, Kanno A, Kim JT, Munster T, Winter KU, Saedler H. (2000) A short history of MADS-box genes in plants. Plant Mol Biol. 42: 115-49 Theissen G, Saedler H. (1995) MADS-box genes in plant ontogeny and phylogeny: Haeckel''s ''biogenetic law'' revisited. Curr Opin Genet Dev. 5: 628-639 Theissen G, Saedler H. (2001) Plant biology. Floral quartets. Nature 25: 469-471 Winter KU, Becker A, Munster T, Kim JT, Saedler H, Theissen G. (1999). MADS-box genes reveal that gnetophytes are more closely related to conifers than to flowering plants. Proc Natl Acad Sci U S A. 96: 7342-7347 Yang C, Vizcay-Barrena G, Conner K, Wilson ZA. (2007) MALE STERILITY1 is required for tapetal development and pollen wall biosynthesis. Plant Cell 19: 3530-3548 Yanofsky MF, Ma H, Bowman JL, Drews GN, Feldmann KA, Meyerowitz EM. (1990) The protein encoded by the Arabidopsis homeotic gene Agamous resembles transcription factors. Nature 346: 35-39 Zhang W, Sun Y, Timofejeva L, Chen C, Grossniklaus U, Ma H. (2006). Regulation of Arabidopsis tapetum development and function by DYSFUNCTIONAL TAPETUM1 (DYT1) encoding a putative bHLH transcription factor. Development 133: 3085-95 Chapter 3 Bai Y, Pattanaik S, Patra B, Werkman JR, Xie CH, Yuan L. (2011) Flavonoid-related basic helix-loop-helix regulators, NtAn1a and NtAn1b, of tobacco have originated from two ancestors and are functionally active. Planta 234: 363-367 Beerli RR, Dreier B, Barbas CF 3rd. (2000) Positive and negative regulation of endogenous genes by designed transcription factors. Proc Natl Acad Sci USA 97: 1495-1500 Bevan M. (1984) Binary Agrobacterium vectors for plant transformation. Nucleic Acids Res. 12: 8711-8721 Bevan MW, Flavell RB, Chilton MD. (1983) A chimaeric antibiotic resistance gene as a selectable marker for plant cell transformation. Biotechnology 24: 367-370 Campbell RE, Tour O, Palmer AE, Steinbach PA, Baird GS, Zacharias DA, Tsien RY. (2002) A monomeric red fluorescent protein. Proc Natl Acad Sci USA 99: 7877-7882 Carrer H, Hockenberry TN, Svab Z, Maliga P. (1993) Kanamycin resistance as a selectable marker for plastid transformation in tobacco. Mol Gen Genet. 241: 49-56 Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. (1994) Green fluorescent protein as a marker for gene expression. Science 263: 802-5 Chen MK, Hsu WH, Lee PF, Thiruvengadam M, Chen HI, Yang CH. (2011) The MADS box gene, FOREVER YOUNG FLOWER, acts as a repressor controlling floral organ senescence and abscission in Arabidopsis. Plant J. 68: 168-185 Cornejo MJ, Luth D, Blankenship KM, Anderson OD, Blechl AE. (1993) Activity of a maize ubiquitin promoter in transgenic rice. Plant Mol Biol. 23: 567-581 Curtis MD, Grossniklaus U. (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol. 133: 462-469 Daniell H, Muthukumar B, Lee SB. (2001) Marker free transgenic plants: engineering the chloroplast genome without the use of antibiotic selection. Curr Genet. 39: 109-116 De Block M, De Brouwer D, Tenning P. (1989) Transformation of Brassica napus and Brassica oleracea Using Agrobacterium tumefaciens and the Expression of the bar and neo Genes in the Transgenic Plants. Plant Physiol. 91: 694-701 Elangovan M, Wallrabe H, Chen Y, Day RN, Barroso M, Periasamy A. (2003) Characterization of one- and two-photon excitation fluorescence resonance energy transfer microscopy. Methods 29: 58-73 Gallie DR, Sleat DE, Watts JW, Turner PC, Wilson TM. (1987) The 5''-leader sequence of tobacco mosaic virus RNA enhances the expression of foreign gene transcripts in vitro and in vivo. Nucleic Acids Res. 15: 3257-3273 Gross LA, Baird GS, Hoffman RC, Baldridge KK, Tsien RY. (2000) The structure of the chromophore within DsRed, a red fluorescent protein from coral. Proc Natl Acad Sci USA 97: 11990-11995 Guyer D, Tuttle A, Rouse S, Volrath S, Johnson M, Potter S, Gorlach J, Goff S, Crossland L, Ward E. (1998) Activation of latent transgenes in Arabidopsis using a hybrid transcription factor. Genetics 149: 633-9 Haseloff J, Siemering KR, Prasher DC, Hodge S. (1997) Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc Natl Acad Sci USA 94: 2122-2127 Hajdukiewicz P, Svab Z, Maliga P. (1994) The small, versatile pPZP family of Agrobacterium binary vectors for plant transformation. Plant Mol Biol. 25: 989-994 Haldrup A, Petersen SG, Okkels FT. (1998) Positive selection: a plant selection principle based on xylose isomerase, an enzyme used in the food industry. Plant Cell Rep. 18: 76-81 Heim R, Cubitt AB, Tsien RY. (1995) Improved green fluorescence. Nature. 373: 663-664 Hellens R, Mullineaux P, Klee H. (2000) Technical Focus:a guide to Agrobacterium binary Ti vectors. Trends Plant Sci. 5: 446-451 Hiratsu K, Matsui K, Koyama T, Ohme-Takagi M. (2003) Dominant repression of target genes by chimeric repressors that include the EAR motif, a repression domain, in Arabidopsis. Plant J. 35: 733-739 Jefferson RA, Kavanagh TA, Bevan MW. (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6: 3901-3907 Joersbo M, Donaldson I, Kreiberg J, Petersen SG, Brunstedt J, Okkels FT. (1998) Analysis of mannose selection used for transformation of sugar beet. Mol breed. 4: 111-117 Karimi M, Depicker A, Hilson P. (2007) Recombinational cloning with plant gateway vectors. Plant Physiol. 145: 1144-1154 Liang D, Wu C, Li C, Xu C, Zhang J, Kilian A, Li X, Zhang Q, Xiong L. (2006) Establishment of a patterned GAL4-VP16 transactivation system for discovering gene function in rice. Plant J. 46: 1059-1072 Lucca P, Ye X, Potrykus I. (2001) Effective selection and regeneration of transgenic rice plants with mannose as selective agent. Mol Breed. 7: 43-49 Nguyen AW, Daugherty PS. (2005) Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol. 23: 355-360 Ohta M, Matsui K, Hiratsu K, Shinshi H, Ohme-Takagi M. (2001) Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13: 1959-1968 Paine JA, Shipton CA, Chaggar S, Howells RM, Kennedy MJ, Vernon G, Wright SY, Hinchliffe E, Adams JL, Silverstone AL, Drake R. (2005) Improving the nutritional value of Golden Rice through increased pro-vitamin A content. Nat Biotechnol. 23: 482-487 Riechmann JL, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang JZ, Ghandehari D, Sherman BK, Yu G. (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290: 2105-10 Ohtsub N. (2011) Beyond the blue rose: Modification of floral architecture with plant-specific chimeric repressor. Plant Biotechnol 28: 113–121 Sasaki K, Aida R, Yamaguchi H, Shikata M, Niki T, Nishijima T, Ohtsubo N. (2010) Functional divergence within class B MADS-box genes TfGLO and TfDEF in Torenia fournieri Lind. Mol Genet Genomics 284: 399-414 Sato H, Yoshida K, Mitsuda N, Ohme-Takagi M, Takamizo T. (2012) Male-sterile and cleistogamous phenotypes in tall fescue induced by chimeric repressors of SUPERWOMAN1 and OsMADS58. Plant Sci. 183: 183-189 Shaner NC, Campbell RE, Steinbach PA, Giepmans BN, Palmer AE, Tsien RY. (2004) Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat Biotechnol. 22: 1567 - 1572 Shaner NC, Lin MZ, McKeown MR, Steinbach PA, Hazelwood KL, Davidson MW, Tsien RY. (2008) Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 6: 545-551 Shaner NC, Steinbach PA, Tsien RY. (2005) A guide to choosing fluorescent proteins. Nat Methods 2: 905-909 Sheng J, Citovsky V. (1996) Agrobacterium-plant cell DNA transport: have virulence proteins, will travel. Plant Cell 8: 1699-1710 Shimomura o, Johnson FH, Saiga Y. (1962) Extraction, purification and properties of aequorin, a bioluminescent protein from the luminous hydromedusan, Aequorea. J Cell Comp Physiol. 59: 223-239 Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM. (2000) Total silencing by intron-spliced hairpin RNAs. Nature 21: 319-320 Waldron C, Murphy EB, Roberts JL, Gustafson GD, Armour SL, Malcolm SK. (1985) Resistance to hygromycin B. A new marker for plant transformation studies. Plant Mol Biol. 5: 103-108 Yordanov YS, Regan S, Busov V. (2010) Members of the LATERAL ORGAN BOUNDARIES DOMAIN transcription factor family are involved in the regulation of secondary growth in Populus. Plant Cell 22: 3662-3677 Ziemienowicz A. (2001) Plant selectable markers and reporter genes. Acta Physiol Plant 23: 363-374 Zupan J, Muth TR, Draper O, Zambryski P. (2000) The transfer of DNA from agrobacterium tumefaciens into plants: a feast of fundamental insights. Plant J. 23: 11-28
摘要: 
How to suppress the cell division in the differentiated cells but not the meristematic cells is largely unknown in plants. The family of Yippee-like (YPEL) genes has been found in various eukaryote species. However, no study on YPEL genes has been reported in plant species. In this study, an Arabidopsis YPEL gene AtYIP1 was characterized. The promoter::GUS assay indicated that AtYIP1 mRNA was constitutively expressed in all tissues except meristematic cells and the AtYIP1 proteins were degraded constantly in cells without further division. Hastened growth and increased size and cell number of leaf were observed in 35S::AtYIP1 RNAi plants. By contrast, growth in the 35S::AtYIP1 plants ectopically expressing AtYIP1 was significantly inhibited. The anatomical analysis revealed that the severe 35S::AtYIP1 mutant phenotype is primarily due to the lack of the cell division in both shoot and root apical meristem. These results revealed a repressor role for AtYIP1 in preventing cell division in Arabidopsis. This assumption was further supported by the suppression of the cells growth for tobacco cell line BY-2 and human embryonic kidney cell line HEK 293T after transfection with flag-tagged AtYIP1. Furthermore, AtYIP1 proteins were found to be able to suppress the abnormal cell division for differentiated cells by entering nucleus and bind to DNA. Our data represents a novel finding that a plant gene is able to suppress cell division and growth in both plant and animal system. (Chapter 1)
Arabidopsis AGL13 is the gene classified as AGL6 lineage of MIKC type MADS-box gene family. Our previous study indicated that AGL13 expression was specifically detected from the initiation to maturation of both pollen and ovules. Ectopic expression of AGL13 RNAi construct was found to cause sterility by inducing the production of flowers with defective pollen and ovules in transgenic Arabidopsis plants. In this study, two types of pollen in equal numbers were found in 35S::AGL13 RNAi/qrt1-2 tetrads. The first type resembles wild-type whereas the second type is reduced in size with a flat or collapsed shape, suggesting that the development of the pollen grains that carried the 35S::AGL13 RNAi was arrested during meiosis. The viability of the wild-type like pollen in AGL13 RNAi plants was tested by adhesion assay and pollination assay. These data indicated that AGL13 not only regulates pollen development but also controls the tapetum function for exine formation. The enhancement of the alteration of pollen development, the sterility of the plants and the flower organ formation in AGL13:SRDX (containing a suppression motif) transgenic plants suggested that AGL13 acts as a repressor. Furthermore, similar defects in floral organs was observed in AGL13:SRDX and SEP2:SRDX plants which was caused by the suppression of the expression for A, B and C function MADS-box genes. AGL13 could interact with B, C function MADS-box protein and form complex to regulated downstream genes expression, including the pollen developing and tapetum formation genes. (Chapter 2)
Finally, series systems of binary vectors have been generated for plant molecular cloning and functional study. All vectors share the same restriction enzyme cloning sites, and contain different combinations of promoters, fusion tags and selection markers. These vectors can be applied to the experimental assays of ectopic expression, RNA silencing, fluorescent tags fusion, heat inducible expression, monocot transformation, dominant negative repression, dominant positive activation, trans-expression. New vectors provided the additional construction procedures for the lab and the experiment assay could be designed with systematically work through standard operating procedure (SOP). (Chapter 3)

植物如何針對已分化之細胞進行細胞分裂的調控與抑制,而非在分生組織的細胞進行仍未被明確地了解與研究。 類Yippee (Yippee-like, YPEL) 基因家族是一群能在所有真核生物細胞中找到的保守性基因。然而在植物中YPEL 基因尚未被研究及報導。本研究針對阿拉伯芥中YPEL家族的基中一個成員,AtYIP1 基因進行選殖與功能性分析。在啟動子融合GUS基因的分析中發現AtYIP1的mRNA持續性的表現在分生組織細胞以外的所有的組織中,並且在已不分裂的細胞中,AtYIP1蛋白質是不斷的在進行降解。以35S啟動子進行AtYIP1 RNAi的轉殖植物中的性狀可見植物的生長速度變快、體型變大、細胞數及同時期的葉片數較多。相對的也發現大量、異源性的表現AtYIP1基因在植物中會造成生長狀況顯著性的被抑制。從組織解剖分析的結果也發現性狀強烈的35S::AtYIP1轉殖株中異變的原因是在於失去幼芽及根系的細胞分裂能力。由上述的結果顯示AtYIP1在阿拉伯芥中扮演著抑制者的角色去阻止細胞進行分裂。此項假說由後續的二項試驗支持:菸草BY-2細胞株以及轉染進行大量表現flag標定的ATYIP1蛋白質的人類HEK 293T腎胚胎細胞株都發生細胞生長被抑制的現象。進一步的發現AtYIP1蛋白能夠結合在DNA上去抑制已分化細胞不正常的進行分裂活動。我們的結果發現一個能在動植物皆能造成抑制細胞分裂生長的植物基因。 (第一章)
阿拉伯芥的AGL13基因是一個MIKC類型MADS-box基因家族的AGL6的系群當中。在過往實驗室的研究中AGL13基因的表現在花粉及胚珠從起始到成熟階段皆能被專一性的測得。異源性的表現AGL13 RNAi構築體可發現阿拉伯芥的轉殖株,其花器的花粉及胚珠皆造成缺陷進而造成無法受孕、稔實的現象。在本次研究中35S::AGL13 RNAi/qrt1-2轉殖突變株的四分體融合花粉中出現數目各半的二種不同花粉。第一種與一般的野生型植株相同,但第二種的花粉外型較小呈現扁平或皺縮的形狀。由此可推論花粉在減數分裂期間若帶有35S::AGL13 RNAi的片段會造成發育停滯的狀況。另外像野生型的花粉也進行了花粉沾附及授粉試驗。由結果發現AGL13基因不僅控制花粉發育也控制著絨氈層進行花粉壁形成的功能。融合了抑制序列的AGL13:SRDX大量的在植物中表現會出現與減少AGL13 RNA內含量的植株性狀更加強的結果。進一步的實驗也發現AGL13:SRDX與SEP2:SRDX的融合表現植株,花器會因A、B及C群MADS-box基因表量被抑制而造成相同發育上的缺失。目前已確認AGL13能與B、C群MADS-box蛋白結合,並形成蛋白複合體,進而調控花粉發育及絨氈層形成下游基因的表現。(第二章)
最後的部分主要說明架構了一系列不同系統的雙元素表達戴體,用來進行植物分子選殖及功能性分析。全系列的戴體皆共用同一份限制酵素截切位點序列,並含有不同啟動子組合變化的、融合標簽蛋白和篩選標記基因。這些戴體可應用在不同的實驗分析技術,包括:異源性表現、RNA靜默、螢光標簽融合、熱處理表現、單子葉作物轉殖、顯性負抑制、顯性正向活化及橫越性表現分析。新的戴體能增加實驗室內不同的構築程序,並且能使實驗分析的設計能以標準系統化的程序進行。(第三章)
URI: http://hdl.handle.net/11455/35864
其他識別: U0005-3107201216184500
Appears in Collections:生物科技學研究所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.