Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3588
DC FieldValueLanguage
dc.contributor杜建勳zh_TW
dc.contributor李夢輝zh_TW
dc.contributor孫幸宜zh_TW
dc.contributor張厚謙zh_TW
dc.contributor.advisor張傑明zh_TW
dc.contributor.author高龍吉zh_TW
dc.contributor.authorKao, Lung-Chien_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-06T05:32:13Z-
dc.date.available2014-06-06T05:32:13Z-
dc.identifierU0005-2508200613375600zh_TW
dc.identifier.citation參考文獻 一、中文部分 [1] 林新發,詹俊雄,陳建忠,和凌永健,「超臨界流體萃取和潔淨技術」,科儀新知,17(2),1995,頁50-58。 [2] 林河木,李明哲,「超臨界流體系統平衡溶解度之量測及關聯」,化工技術,67(10),1998,頁120-138。 [3] 林宗俊,「丁香及其主成分防治甘藍苗立枯病的功效」, 2000,國立中興大學植物病理學研究所碩士論文。 [4] 吳泰昇,「高壓下烷基卡必醇與二氧化碳混合物之汽液平衡研究」,2001,國立台灣科技大學化學工程研究所碩士論文。 [5] 陳文川,「乙醇-乙酸乙酯-水三成分系統於常壓下汽液液相平衡之研究」,1994,國立中央大學化學工程研究所碩士論文。 [6] 陳文華,「東方果實蠅食物引誘劑之開發」,1989,國立中興大學昆蟲學研究所碩士論文。 [7] 陳衛理,「超臨界流體萃取」,礦冶,34/4,1990,頁27-36。 [8] 陳家慶,「二氧化碳與黃豆油指標成分之高壓相平衡」,1999,國立中興大學化學工程研究所碩士論文。 [9] 姚發,劉廷禮,秋琴,趙怡,「母丁香揮發油化學成分的GC-MS研究」,中草藥,32(3),2001,頁203。 [10] 姚新生,「天然藥物化學」,大陸人民衛生出版社,第四版,2003,頁261。 [11] 廖超林,「泰國姜黃精油(Turmrtric Oil)化學成分分析」林產化工通訊,33(6),1999,頁10。 [12] 劉崇百,「桃金孃科植物丁香花蕾之抗線蟲活性成份之研究」,2001,國立中興大學化學研究所碩士論文。 二、西文部分 [1] Adachi, Y., and Sugie, H., “A new mixing rule – modified conventional mixing rule,” Fluid Phase Eq., Vol.28, pp.103 (1986). [2] Adasoglu, N., Dincer, S., and Bolat, E., “Supercritical fluid extraction of essential oil from Turkish lavender flowers,” J. Supercrit. Fluid, Vol.7, pp.93-99 (1994). [3] Albert, H.J., and Wood, R.H., “High-pressure flow densimeter for fluids at temperature to 700 K and pressure to 40 MPa,” Rev. Sci. Instrum., Vol.55, No.34, pp.589-593 (1984). [4] Akgun, M., Akgun, N. A., and Dincer, S., “Phase behavior of essential oil components in supercritical carbon dioxide,” Journal of Supercritical Fluids, Vol.15, pp.117-125 (1999). [5] Ambrose, D., “Correlation and estimation of vapor-liquid critical properties. Ι. critical temperatures of organic compounds,” National Physical Laboratory, Tedding, NPL Rep. Chem. (1980). [6] Ammon, H.P.T., and Wahl, M.A. “Pharmacology of Curcuma longa,” Planta Med, Vol.57, pp.1-7 (1991). [7] Amphawan, A., Nongnuch, V., and Duang, B., “Antifungal activity of turmeric oils extracted from Curcuma longa (Zingiberaceae),” Journal of Ethnopharmacology, Vol.49, pp.163 (1995). [8] Anna, C.C.M.M, Fabio, S.T., Eliane, B., and Nanci, P.P., “Extraction of essential oil and pigments from Curcuma longa [L.] by steam distillation and extraction with volatile solvents,” J. Agric. Food Chem., Vol.51, pp.6802 (2003) [9] Barth, M.M., Zhou, C., Kute, K.M., and Rosenthal, G.A., “Determination of optimum conditions for supercritical fluid extraction of carotenoides from carrot (Daucus carota L.) tissue,” J. Agric. Food Chem., Vol.43, pp.2876-2878 (1995). [10] Baysol, T., and Starmans, D.A.J., “ Supercritical carbon dioxide extraction of carvone and limonene from caraway seed,” J. Supercrit. Fluid, Vol.14, pp.225-234 (1999). [11] Chang, C.J., “Volume expansion coefficients and activity coefficients of high-pressure carbon dioxide dissolution in Organic liquids at 298 K,” J. Chem. Eng. Jpn., Vol.25, pp.164-170 (1992). [12] Chang, C.J., Day, C.Y., Ko, C.M., and Chiu, K.L., “Densities and P-x-y diagrams for carbon dioxide dissolution in methanol, ethanol, and acetone mixtures,” Fluid Phase Equilibria, vol.131, pp.243-258 (1997). [13] Chang, C.J., Chiu K.L., and Day, C.Y., “A new apparatus for the determination of P-x-y diagrams and Henry’s constants in high pressure alcohols with critical carbon dioxide,” Journal of Supercritical Fluids, Vol.12, pp.223-237 (1998). [14] Chang, C.M., and Chen, C.C., “High-pressure densities and P-T-x-y diagrams for carbon dioxide + linalool and carbon dioxide + limonene,” Fluid Phase Equilibria, Vol.163, pp.119-126 (1999). [15] Chang, C.J., Lee, M.S., Li, B.C., and Chen, P.Y., “Vapor-liquid equilibria of CO2 with four unsaturated fatty acid esters at elevated puressure,” Fluid Phase Equilibria, Vol.233, pp.56-65 (2005). [16] Chang, L.H., Jong, T.T., Huang, H.S., Nien Y.F., and Chang, C.M.J., ”Supercritical carbon dioxide extraction of turmeric oil from Curcuma longa linn and purification of turmerones,” Separation and Purification Technology, Vol.47, pp,119-125 (2006). [17] Chen, C.C., Chang, C.J., and Yang, P.W., ”Vapor-liquid equilibria of carbon dioxide with linoleic acid, α-tocopherol and triolein at elevated pressures,” Fluid Phase Equilibria, Vol.175, pp.107-115 (2000). [18] Chen, Y.S., Ho, C.C., Cheng, K.C., Tyan, Y.S., Hung, C.F., Tan, T.W., and Chung, J.G., “ Curcumin inhibited the arylamines N-acetyltransferase activity, Gene expression and DNA adduct formation in human lung cancer cells (A549)”, Toxicology in Vitro, Vol.17, pp.323 (2003). [19] Cheng, W.C., Kuo, S.J., Tang, M., Chen, Y.P., ”Vapor- liquid equilibria at elevated pressure of binary mixtures of carbon dioxide with methyl salicylate, eugenol, and diethyl phthalate,” J. of Supercritical Fluids, Vol.18, pp.87-99 (2000). [20] Colombo, M.L., Corsini, A., Mossa, A., Sala, L., and Stanca, M., “Supercritical carbon dioxide extraction fluorometric and electrochemical high performance liquid chromatographic detection of vitamin E from hordeum vulgare. L.,” Phytochem. Anal., Vol.9, pp.192-195 (1998). [21] Damiani, C.E.N., Rossoni, L.V., and Vassallo, D.V., “Vasorelaxant effects of eugenol on rat thoracic aorta,” Vascular Pharmacology, Vol.40, pp.59 (2003). [22] Ferreira, L.A.F., Henriques, O.B., Andreoni, A.A.S., Vital, G.R.F., Campos, M.M.C., Habermehl, G.G., and Moraes, V.L.G., “Antivenom and biological effects of ar-turmerone isolated from Curcuma longa (Zingiberaceae),” Toxicon, Vol.30, pp.1211-1218, (1992). [23] Fonseca, J., Simoes, P.C., and Ponte, M.N.D., “An apparatus for high-pressure VLE measurements using A static mixer. Results for (CO2 + limonene + citral) and (CO2 + limonene + linalool),” J. of Supercritical Fluids, Vol.25, pp.7-17 (2003). [24] Foster, N.R., Ting, S.S.T., Macnaughton, S.J., and Tomasko, D.L., “Solubility of naproxen in supercritical carbon dioxide,” Ind. Eng. Chem. Res, Vol.32, pp.1471-1481 (1993). [25] Gironi, F., and Lamberti, L., “Deterpenation of lemon essential Oil,” In Proceedings of The 3rd International Symposium on Supercritical Fluids. Tome 2, Process Design Development: Natural Products, Biological and Environmental Applications. I.S.A.S.F organization, Nancy, France, pp.457-464 (1994). [26] Goel, A., Boland, C.R. and Chauhan, D.P., “Specific inhibition of cyclooxygenase-2 (COX-2) expression by dietary Curcumin in HT-29 human colon cancer cells,” Cancer Letters, Vol.172, pp.111 (2001). [27] Habsah, M., Amran, M., Mackeen, M.M., Lajis, N.H., Kikuzaki, H., Nakatani, N., Rahman, A.A., Ghafar, and Ali, A.M., “Screen of zingiberaceae extracts for antimicrobial and antioxidant activities,” Journal of Ethnopharmacology, Vol.72, pp.403 (2000). [28] Harald, R., Christoph S., Claudia S. K., Ernst H., and Peter C. S. , “Enrichment of hyperforin from St. John’s Wort (Hypericum perforatum) by pilot-scale supercritical carbon dioxide extraction,” European Journal of Pharmaceutical Sciences , Vol.21, pp.443-451 (2004). [29] Henry, J.A., Jeffrey, A.G., and Robert, H.W., “Densities of toluene, butanol and their binary mixtures from 289 K to 400 K, and from 0.5 to 20.0 MPa,” Fluid Phase Equilibria, Vol.20, pp.321-330 (1985). [30] Iwai, Y., Hosotani, N., Morotomi, T., Koga, Y., and Arai, Y., “High-pressure vapor-liquid equilibrium for carbon dioxide+linalool,” J.Chem.Eng.Date, Vol.39, pp.900-902, (1994). [31] Iwai, Y., Morotomi, T., Sakamoto, K., Koga, Y., and Arai, Y., “High-pressure vapor-liquid equilibrium for carbon dioxide+limonene,” J.Chem.Eng.Date, Vol.41, pp.951 -952 (1996). [32] Jacobsen, R.T., Stewart, R.B., and Jahangiri, M., “Thermo -dynamic properties of nitrogen from the freezing line to 2000 K at pressures to 1000 MPa,” J. Phys. Chem. Ref. Data, Vol.15, No.32, pp.735-909 (1986). [33] Jaubert, J., Borg, P., Coniglio, L., and Barth, D., “Phase equilibria measurements and modeling of EPA and DHA ethyl esters in supercritical carbon dioxide,” Journal of Supercritical Fluids, Vol.20, pp.145-155 (2001). [34] Joback, K.G., and Reid, R.C., “Estimation of pure compound properties from group-contributions,” Chem. Eng. Commun., Vol.5, pp.233-243 (1987). [35] Kato, M., Aizawa, K., Kanakira, T., and Ozawa, T., “A new experimental method of vapor-liquid equilibria at high - pressure,” J. Chem. Eng. Jpn., Vol.24, pp.767-771 (1991). [36] Lee, B.I., and Kesler, M.G., “A generalized thermodynamic correlation based on three-parameter corresponding states,” AIChE J., Vol.21, pp.510 (1975). [37] Leunissen, M., Davidson, V.J., and Kakuda, Y., “Analysis of volatile flavor components in roasted peanuts using supercritical fluid extraction and gas chromatography mass spectrometry,” J. Agric. Food Chem., Vol.44, pp.2694-2699 (1996). [38] Li, Q., Wang, C., and Jiang, Y., “A study of anticancer effect of volatile oil of Curcumas”, Journal of Sichuan Continuing Education College of Medical Science, Vol.14, No.31, pp.3 (1995). [39] Lockemann, C.A., S. Munoz de Soto-soliz, and Schlunder, E.-U., “High-pressure phase equilibria and densities of the binary system carbon dioxide/methyl laurate,” Chemical Engineering and Processing, Vol.34, pp.561-564 (1995). [40] Masaki, S., Goto, M., Kondo, M., Kodama, A., and Hirose, T., “Countercurrent extraction by supercritical carbon dioxide for the fractionation of citrus oil, ” The 4th International Symposium on Supercritical Fluids, May 11-14, Sendai,Japan, pp.605-608 (1997). [41] McHungh, M.A., and Krukonis, V.J., “Supercritical Fluid Extraction: Principles and Practice,” Butterworth, Stoneham, MA (1994). [42] McHungh, M.A., and Krukonis, V.J., “Supercritical Fluid Extraction: Principle and Practice,” Butterworth Publishers, (1986). [43] Nagahama, K., “VLE measurements at elevated pressures for process development,” Fluid Phase Equilibria, Vol.116, pp.361-372 (1996). [44] Palma, M., and Taylor, L.T., “Extraction of polyphenolic compounds from grape seeds with near critical cardon dioxide,” J. Chromatogr. A., Vol.849, pp.117-124 (1999). [45] Palma, M., Taylor, L.T., Zoecklein, B.W., and Douglas, L.S., “Supercritical fluid extraction of grape glycosides,” J. Agric. Food Chem., Vol.48, pp.775-779 (2000). [46] Panagiotopoulus, A.Z., and Reid, R.C., “High-pressure phase equilibria in a ternary fluid mixture with a supercritical component,” ACS Division of Fuel Chemistry Preprints, Vol.30, No.3, pp.46 (1985). [47] Panagiotopoulus, A.Z., and Reid, R.C., “High-pressure phase equilibria in a ternary fluid mixture with a supercritical component,” In Supercritical Fluids: Chemical and Engineering Principles and Applications; ACS Symposium Series 329; American Chemical Society: Washington, DC, pp.115-129 (1987). [48] Patel, N.C. and Teja, A.S., ”A new cubic equation of state for fliud and fluid mixtures,” Chem. Eng. Sci., Vol.37, pp.463-473 (1982). [49] Peng, D.Y. and Robinson, D.B., “A new two-constant equation of state,” Ind. Eng. Chem. Fundam., Vol.15, pp.59-64 (1976). [50] Ramachandran, C., Fonseca, H.B., Jhabvala, P., Escalon, E.A., and Melnick, S.J., “Curcumin inhibits telomerase activity through human telomerase reverse transcritpase in MCF-7 breast cancer cell line,” Cancer Letters, Vol.184, pp.1 (2002). [51] Richon., D., “New experimental developments for phase equilibrium measurements,” Fluid Phase Equilibria, Vol.116, pp.421-428 (1996). [52] Rizvi, S.S.H., Danies, J.A., and Benado, A.L., “Supercritical fluid extraction: Operation principles and food application,” Food Technology, Vol.6, pp.57-65 (1986). [53] Schneider, G.M., “Physicochemical principles of extraction with supercritical gases,” Angew. Chem. Int. Engl., Vol.17, pp.716, 1978. [54] Singh, G., Singh, O.P., and Maurya, S., “Chemical and biocidal investigations on essential oils of some indian curcuma species,” Progress in Crystal Growth and Characterization of Materials, pp.75 (2002). [55] Soave, G.,”Eqilibrium constants from a modified Redlich- Kwong equation of state,” Chem. Eng. Sci., Vol.27, pp.1197- 1203 (1972). [56] Souza, A.T., Corazza, M.L., Lucio C.F., Reginaldo G., and Meireles M. A. A., “Phase equilibrium measurements for the system clove (Eugenia caryophyllus) oil + CO2 ,” J.Chem.Eng.Data, vol.49, pp.352-356 (2004). [57] Strode, J.T.B., Taylor, L., and Vanbeek, T.A., “Supercritical fluid chromatography of ginkgolides A, B, C and J and bilobalide,” J. Chromatogr. A., Vol.738, pp.115-122 (1996). [58] Tsivintzelis, I., Missopolinou, D., Kalogiannis, K., and Panayiotou, C., “Phase compositions and saturated densities for the binary systems of carbon dioxide with ethanol and dichloromethane,” Fluid Phase Equilibria, Vol.224, pp.89-96 (2004). [59] Valero M., and Salmeron, M.C., ”Antibacterial activity of 11 essential oils against bacillus cereus in tyndallized carrot broth,” International Journal of Food Microbiology, Vol.85, pp.73 (2003).zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3588-
dc.description.abstract中文摘要 本研究以超臨界二氧化碳,萃取中草藥原料薑黃的薑黃酮油。在313.15 K和260 bar的超臨界態下,經2.5小時萃取,可得到產率4.68 wt%至6.14 wt%的薑黃精油。接著以正相樹脂silica gel-60的管柱純化程序。使用正己烷和乙酸乙酯或丙酮的混合液,配成五種不同比例(體積比)的沖提液來進行沖提,提高薑黃精油中三種薑黃酮(ar-turmerone、α-turmerone和β-turmerone)的純度。實驗結果顯示,經50~60公分正相樹脂silica gel-60管柱純化分離後,薑黃酮純度可由67.6 wt%提昇至80.0 wt%以上。重複再經正相樹脂silica gel-60管柱純化分離後,最後可得薑黃酮純度91.8 wt%的薑黃精油。高壓汽液相平衡方面,以定體積靜態式裝置,搭配汽液相循環系統,並聯兩個震盪管密度儀,量測二氧化碳與薑黃酮之汽液相密度,相組成,及平衡常數。兩個研究溫度為313.15 K與333.15 K。壓力範圍由2.82至20.80 MPa。最後,薑黃酮汽液相平衡數據,代入PE模擬軟體中,分別以三種狀態方程式(PR-EOS、SRK-EOS、PT-EOS),搭配三種混合律(MR-Q、MR-AS、MR-PR)及兩種目標函數,來擬合得到液相組成及汽相組成的計算值。數據顯示平均相對偏差目標函數,較適合二氧化碳與薑黃酮油的汽相組成的擬合計算。zh_TW
dc.description.abstractSUMMARY This study mainly investigates high-pressure phase equilibria of turmerones and carbon dioxide. Supercritical carbon dioxide extraction at 313.15 K and 260 bar, produces 4.68% to 6.14% turmeric oil containing 67.7% purity of turmerones. A normal phase silica gel 60 column was then employed to purify three turmerones( ar-turmerone, α-turmerone and β-turmerone) from this turmerone-rich oil, and the oil containing 91.8% purity of turmerones was obtained. A static phase equilibrium apparatus with two magnetic circulation pumps was capable of providing vapor and liquid composition data for a binary mixture of turmerone and CO2 at 313.15 and 333.15 K, pressures ranged from 2.82 MPa to 20.80 MPa. Liquid and vapor densities for this high-pressure carbon dioxide + turmerone solution were also obtained. The vapor-liquid equilibrium data were finally correlated using three equations of state(PR-EOS, SRK-EOS, PT-EOS) combined with three mixing rules(MR-Q, MR-AS, MR-PR). An objective function of relative average deviation gave a better correlation for this high-pressure vapor equilibria of turmerones and carbon dioxide system.en_US
dc.description.tableofcontents目錄 中文摘要 I SUMMARY II 目錄 III 表目錄 V 圖目錄 VIII 符號說明 XII 第一章 緒論 1 第二章 文獻回顧 3 2-1 精油種類 3 2-1-1 精油的性質 3 2-1-2 丁香簡介 4 2-1-3 薑黃簡介 5 2-2 超臨界流體的性質與應用 6 2-3 高壓流體相平衡量測方法簡介 7 2-3-1 靜態式的相平衡實驗 8 2-3-2 循環式的相平衡實驗 8 2-3-3 動態式的相平衡實驗 8 2-3-4 觀測霧泡現象之相平衡實驗 9 2-3-5 密度儀分析之相平衡實驗 9 2-4 精油成分之相平衡研究 10 第三章 實驗部分 12 3-1 藥品 12 3-2 儀器 15 3-3 超臨界萃取薑黃精油實驗 19 3-3-1薑黃原料之前處理 19 3-3-2超臨界萃取流程 20 3-4 薑黃精油純化實驗 20 3-5 薑黃酮之定量分析 22 3-6 兩相高壓汽液相平衡實驗 23 3-6-1 空白實驗及穩壓測試 23 3-6-2 壓力檢量常數的實驗 24 3-6-3 汽液相密度的平衡實驗 24 3-6-4 二氧化碳總用量之量測 26 3-6-5 相平衡系統總體積之量測 26 第四章 理論部分 27 4-1高壓流體中物質理論模式 27 4-2高壓氣液相平衡的理論模式 29 4-3 混合律 34 4-4 密度的測量原理 36 4-5 高壓流體密度之壓力檢量常數 37 4-6 汽液相溶液之成分莫耳分率 38 4-7目標函數之訂定 40 4-8 純成分臨界參數之計算 42 4-9 PE擬合程式計算 43 第五章 結果與討論 45 5-1 超臨界二氧化碳萃取薑黃精油探討 45 5-2純化薑黃酮 45 5-3高壓汽液相平衡 47 5-3-1汽相及液相溶液的密度 47 5-3-2薑黃酮與二氧化碳之汽液相平衡 48 5-3-3薑黃酮與二氧化碳之等溫平衡常數 49 5-3-4薑黃酮的溶解度與二氧化碳密度 51 5-4薑黃酮與二氧化碳之汽液相平衡擬合 51 第六章 結論 55 參考文獻 57 表目錄 Table 2-1. 氣態、液態與超臨界態的某一流體物性比較 67 Table 2-2. 超臨界流體萃取天然物有效成分的代表文獻 68 Table 4-1. Physical property estimated by equations 69 Table 4-2. Physical properties of model compounds 70 Table 4-2. (續) 薑黃酮油的臨界常數估算值 71 Table 5-1. 超臨界二氧化碳萃取薑黃精油之實驗數據 72 Table 5-2. Experimental P-T-x-y data of CO2 (1)+ eugenol (2) binary system at 313.15 K and 333.15 K 73 Table 5-3. Experimental P-T-x-y data of CO2 (1)+ ethanol (2) binary system at 313.15 K 74 Table 5-4. Experimental P-T-x-y data of CO2 (1)+ turmerone (2) binary system at 313.15 K and 333.15 K 75 Table 5-5. CO2 + ethanol, deviation from Chang et al. (1997) and Tsivintzekis et al. (2004) 76 Table 5-6. Calculated data for CO2(1) + turmerone(2) system correlated with PR-EOS at 313.15 K (relative^2) 77 Table 5-7. Calculated data for CO2 (1) + turmerone(2) system correlated with SRK-EOS at 313.15 K(relative^2) 78 Table 5-8. Calculated data for CO2 (1) + turmerone(2) system correlated with PT-EOS at 313.15 K(relative^2) 79 Table 5-9. Calculated data for CO2 (1) + turmerone(2) system correlated with PR-EOS at 333.15 K(relative^2) 80 Table 5-10. Calculated data for CO2 (1) + turmerone(2) system correlated with SRK-EOS at 333.15 K(relative^2) 81 Table 5-11. Calculated data for CO2 (1) + turmerone(2) system correlated with PT-EOS at 333.15K (relative^2) 82 Table 5-12. PR-EOS,SRK-EOS,PT-EOS correlation parameters for CO2 + turmerone system at 313.15 K (relative^2) 83 Table 5-13. PR-EOS,SRK-EOS,PT-EOS correlation parameters for CO2 + turmerone system at 333.15 K (relative^2) 84 Table 5-14. PR-EOS,SRK-EOS,PT-EOS correlation parameters for CO2 + turmerone system at 313.15 K (absolute) 85 Table 5-15. PR-EOS,SRK-EOS,PT-EOS correlation parameters for CO2 + turmerone system at 333.15 K (absolute) 85 附表1-1、樹脂純化薑黃精油的原始數據 124 附表1-2、樹脂純化薑黃精油的原始數據 124 附表1-3、樹脂純化薑黃精油的原始數據 125 附表1-4、樹脂純化薑黃精油的原始數據 125 附表1-5、樹脂純化薑黃精油的原始數據 126 附表1-6、樹脂純化薑黃精油的原始數據 127 附表1-7、樹脂純化薑黃精油的原始數據 128 附表1-8、樹脂純化薑黃精油的原始數據 129 附表1-9、樹脂純化薑黃精油的原始數據 130 附表1-10、樹脂純化薑黃精油的原始數據 131 附表1-11、樹脂純化薑黃精油的原始數據 132 附表1-12、樹脂純化薑黃精油的原始數據 133 附表1-13、樹脂純化薑黃精油的原始數據 134 附表1-14、樹脂純化薑黃精油的原始數據 135 附表1-15、樹脂純化薑黃精油的原始數據 136 附表1-16、樹脂純化薑黃精油的原始數據 137 附表1-17、樹脂純化薑黃精油的原始數據 138 附表1-18、樹脂純化薑黃精油的原始數據 139 附表1-19、樹脂純化薑黃精油的原始數據 140 附表1-20、樹脂純化薑黃精油的原始數據 141 附表1-21、樹脂純化薑黃精油的原始數據 142 附表1-22、樹脂純化薑黃精油的原始數據 143 附表1-23、樹脂純化薑黃精油的原始數據 144 附表2、Calculated data for CO2(1) + turmerone(2) system correlated with PR-EOS at 313.15 K (absolute) 145 附表3、Calculated data for CO2 (1) + turmerone(2) system correlated with SRK-EOS at 313.15 K(absolute) 146 附表4、Calculated data for CO2 (1) + turmerone(2) system correlated with PT-EOS at 313.15 K(absolute) 147 附表5、Calculated data for CO2 (1) + turmerone(2) system correlated with PR-EOS at 333.15 K(absolute) 148 附表6、Calculated data for CO2 (1) + turmerone(2) system correlated with SRK-EOS at 333.15 K(absolute) 149 附表7、Calculated data for CO2 (1) + turmerone(2) system correlated with PT-EOS at 333.15 K(absolute) 150 圖目錄 Fig.2-1. 薑黃精油中含量最多薑黃酮之化學結構 86 Fig.2-2. 超臨界流體之壓力與溫度相圖 87 Fig.3-1. 港香蘭藥廠超臨界流體萃取裝置流程圖 88 Fig.3-2. 純化薑黃酮的樹脂管柱層析裝置流程圖 89 Fig.3-3. 樹脂純化薑黃酮之實驗流程圖 90 Fig.3-4. 薑黃油與薑黃酮的HPLC圖譜 91 Fig.3-5. Block diagram of experimental and data procedures 92 Fig.3-6. Experimental setup for V-L phase equilibria measurement 93 Fig.5-1. 薑黃酮純度對收集液作圖 95 Fig.5-2. Phase density of CO2 + eugenol mixture at 313.15 and 333.15 K (●,▲) heavy phase; (○,△) light phase. 96 Fig.5-3. Phase density of CO2 + ethanol mixture at 313.15 K (●) heavy phase; (○) light phase. 97 Fig.5-4. Phase density of CO2 + turmerone mixture at 313.15 and 333.15 K (●,▲) heavy phase; (○,△) light phase. 98 Fig.5-5. P-x-y diagram of CO2 (1) + eugenol(2) mixture. (●,▲) 313.15 K, 333.15 K this work ; (◇,☆) Cheng et al.(2000). 318.15K (◇), 328.15K (☆) 99 Fig.5-6. P-x-y diagram of CO2 (1) + ethanol (2) mixture. (●) 313.15 K this work ; (△)313.14 K Chang et al.(1997) ; (◇) 313.2 K Tsivintzelis et al. (2004). 100 Fig.5-7. P-x-y diagram of CO2 (1) + turmerone(2) mixture at 313.15 and 333.15 K (●,▲) 101 Fig.5-8. P-x-y diagram of CO2 (1) + turmerone(2) mixture.(․) 313.15 K;PR-EOS with (— ,– –, – - –)Q, AS, PR mixing rule. (relative^2) 102 Fig.5-9. P-x-y diagram of CO2 (1) + turmerone(2) mixture.(․) 313.15 K;SRK-EOS with (— ,– –, – - –)Q, AS, PR mixing rule. (relative^2) 103 Fig.5-10. P-x-y diagram of CO2 (1) + turmerone(2) mixture.(․) 313.15 K;PT-EOS with (— ,– –, – - –)Q, AS, PR mixing rule. (relative^2) 104 Fig.5-11. P-x-y diagram of CO2 (1) + turmerone(2) mixture.(․) 333.15 K;PR-EOS with (— ,– –, – - –)Q, AS, PR mixing rule. (relative^2) 105 Fig.5-12. P-x-y diagram of CO2 (1) + turmerone(2) mixture.(․) 333.15 K;SRK-EOS with (— ,– –, – - –)Q, AS, PR mixing rule. (relative^2) 106 Fig.5-13. P-x-y diagram of CO2 (1) + turmerone(2) mixture.(․) 333.15K;PT-EOS with (— ,– –, – - –)Q, AS, PR mixing rule. (relative^2) 107 Fig.5-14. Equilibrium constants of CO2 + eugenol mixture. (●,▲) CO2 at 313.15 K, 333.15 K; (○,△) eugenol at 313.15 K, 333.15 K 108 Fig.5-15. Equilibrium constants of CO2 + ethanol mixture. (●) CO2 at 313.15 K; (○) ethanol at 313.15 K, 109 Fig.5-16. Equilibrium constants of CO2 + turmerone mixture. (●,▲) CO2 at 313.15 K, 333.15 K; (○,△) turmerone at 313.15 K, 333.15 K;313.15K (— , ---) calculated by PTEOS-Q (relative^2);333.15K (– - –, – - - –) calculated by PREOS-AS (relative^2) 110 Fig.5-17. y2-P diagram of CO2 (1) + turmerone(2) mixture.(●, ▲) 313.15 K, 333.15 K;313.15 K (—) calculated by PTEOS-Q (relative^2);333.15 K (---) calculated by PREOS-AS (relative^2) 111 Fig.5-18. Solubility of eugenol in CO2 as a function of CO2 density. (●,▲) 313.15 K, 333.15 K. 112 Fig.5-19. Solubility of ethanol in CO2 as a function of CO2 density. (●) 313.15 K. 113 Fig.5-20. Solubility of turmerone in CO2 as a function of CO2 density. (●,▲) 313.15 K, 333.15 K. 114 Fig.5-21. Solubility of eugenol in CO2. (●,▲) 313.15 K, 333.15 K. 115 Fig.5-22. Solubility of ethanol in CO2. (●) 313.15 K. 116 Fig.5-23. Solubility of turmerone in CO2. (●,▲) 313.15 K, 333.15 K. 117 Fig.5-24. P-x-y diagram of CO2 (1) + turmerone(2) mixture.(․) 313.15 K;PR-EOS with (— ,– –, – - –)Q, AS, PR mixing rule. (absolute) 118 Fig.5-25. P-x-y diagram of CO2 (1) + turmerone(2) mixture.(․) 313.15 K;SRK-EOS with (— ,– –, – - –)Q, AS, PR mixing rule. (absolute) 119 Fig.5-26. P-x-y diagram of CO2 (1) + turmerone(2) mixture.(․) 313.15 K;PT-EOS with (— ,– –, – - –)Q, AS, PR mixing rule. (absolute) 120 Fig.5-27. P-x-y diagram of CO2 (1) + turmerone(2) mixture.(․) 333.15 K;PR-EOS with (— ,– –, – - –)Q, AS, PR mixing rule. (absolute) 121 Fig.5-28. P-x-y diagram of CO2 (1) + turmerone(2) mixture.(․) 333.15 K;SRK EOS with (— ,– –, – - –)Q, AS, PR mixing rule. (absolute) 122 Fig.5-29. P-x-y diagram of CO2 (1) + turmerone(2) mixture.(․) 333.15 K;PT-EOS with (— ,– –, – - –)Q, AS, PR mixing rule. (absolute) 123 附圖一、KpL ( Filled)、KpV ( Hollow ) as a function of pressure and temperature 151 附圖二、Square of oscillation period of vibrating tube as a function of nitrogen density for DMA512. 152 附圖三、Square of oscillation period of vibrating tube as a function of water density for DMA512. 153 附圖四、Square of oscillation period of vibrating tube as a function of nitrogen density for DMA512P 154 附圖五、Square of oscillation period of vibrating tube as a function of water density for DMA512P 155zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2508200613375600en_US
dc.subjecthigh-pressure vapor liquid equilibriaen_US
dc.subject高壓汽液相平衡zh_TW
dc.subjectturmeroneen_US
dc.subjectcarbon dioxideen_US
dc.subjectequation of stateen_US
dc.subjectcorrelationen_US
dc.subject薑黃酮zh_TW
dc.subject二氧化碳zh_TW
dc.subject狀態方程式模擬zh_TW
dc.title薑黃酮類與二氧化碳之高壓汽液相平衡與擬合計算zh_TW
dc.titleVapor-Liquid Equilibria and correlation of Carbon Dioxide and Turmerones at Elevated Pressureen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:化學工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.