Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3589
DC FieldValueLanguage
dc.contributor邱信程zh_TW
dc.contributorHsin-Cheng Chiuen_US
dc.contributor廖建勛zh_TW
dc.contributorChien-Shiun Liaoen_US
dc.contributor.advisor蔡毓楨zh_TW
dc.contributor.advisorYu-Chen Tsaien_US
dc.contributor.author廖商惟zh_TW
dc.contributor.authorLiao, Shang-Weien_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-06T05:32:14Z-
dc.date.available2014-06-06T05:32:14Z-
dc.identifierU0005-2606200616141600zh_TW
dc.identifier.citation[1] 和敏夫,臨床化學,合記圖書出版,1998。 [2] L.C. Jr Clark, C.Lyons, Ann. N.Y.Acad.Sci. 102, 29, 1962. [3] C.R.K. Rao, D.C. Trivedi, Coordination Chemistry Reviews 249, 613, 2005. [4] J.C. Vidal, E.Garcia-Ruiz, J.R. Castillo, J. Pharm. Biomed. Anal. 24 51, 2000. [5] S. Ahemd, S. Ji, L.Petrik, V.M. Linkov, Analytical. Science 20, 1283, 2004. [6] P.J. Kulesza, M. Matczak, A. Wolkiewicz, B. Grzybowska, M. Galkowski, M.A. Malik, A. Wieckowski, Electrochimica Acta 44, 2131, 1999. [7] G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57, 1982. [8] G. Binning, C.F. Quate, Ch. Gerber, Phys. Rev. Lett. 56,930, 1986. [9] M.R. Rodgers, M.A. Wendman, F.D. Yashar, Microelectron. Reliab. 33, 1947, 1993. [10] N. Nonnenmacher, M.P. O’Boyle, H.K. Wickramasinghe, Appl. Phys. Lett. 68, 2921, 1991. [11] G. Neubauer, A. Erickson, C.C. Williams, J.J. Kopanski, M. Rodgers, D. Adderton, J. Vac. Sci. Technol. B 14, 426, 1996. [12] H.J. Mamin, D. Rugar, J.E. Stern, R.E. Fontana, Jr., P. Kasiraj, Appl. Phys. Lett. 55, 318, 1989. [13] A. Noy, D.V. Vezenov, J.F. Kayyem, T.J. Meade, C.M. Lieber, Chem. Biol. 4, 519, 1997. [14] P.C.D. Hobbs, Y. Martin, C.C. Williams, H.K. Wickramasinghe, Proc. SPIE 897, 26, 1988. [15] C.B. Prater, Y.E. Strausser, Proc. 5th International Conference on Defect Recognition and Image Processing in Semiconductors and Devices 69, 1993. [16] C. Baur, A. Bugacov, B.E. Koel, A. Madhukar, N. Montoya, T.R. Ramachandran, A.A.G. Requicha, R. Resch, P. Will, Nanotechnology 9, 360, 1998. [17] P.H. Beton, A.W. Dunn, P. Moriarty, Appl. Phys. Lett. 67, 1075, 1995. [18] T.A. Jung, R.R. Schlittler, J.K. Gimzewski, H. Tang, C. Joachim, Science 271, 181, 1996. [19] J.A. Stroscio, D.M. Eigler, Science 254, 1319, 1991. [20] M.T. Cuberes, R.R. Schlitter, J.K. Gimzewski, Appl. Phys. Lett. 69, 3016, 1996. [21] I.W. Lyo, P. Avouris, Science 253, 173, 1991. [22] M.A. McCord, R.F. W. Pease, J. Phys. Colloq. 47, 485, 1986. [23] H.T. Soh, K.W. Guarini, C.F. Quate, “Scanning Probe Lithography”, Kluwer, Boston, 2001. [24] V. Bouchiat, D. Esteve, Appl. Phys. Lett. 69, 3098, 1996. [25] L.L. Sohn, R.L. Willett, Appl. Phys. Lett. 67, 1552, 1995. [26] R. Magno, B.R. Bennett, Appl. Phys. Lett. 70, 1855, 1997. [27] S. Hu, S. Altmeyer, A. Hamidi, B. Spangenberg, H. Kurz, J. Vac. Sci. Technol. B 16, 1983, 1998. [28] U. Kunze, B. Klehn, Adv. Mater. 11, 1473, 1999. [29] B. Klehn, U. Kunze, J. Appl. Phys. 85, 3897, 1999. [30] S. Hu, A. Hamidi, S. Altmeyer, T. Koster, B. Spangenberg, H. Kurz, J. Vac. Sci. Technol. B 16, 2822, 1998. [31] S. Xu, G.Y. Liu, Langmuir 13, 127, 1997. [32] S. Xu, S. Miller, P.E. Laibinis, G.Y. Liu, Langmuir 15, 7244, 1999. [33] G.Y. Liu, S. Xu, Y. Qian, Acc. Chem. Res. 33, 457, 2000. [34] H.J. Mamin, B.D. Terris, L.S. Fan, S. Hoen, R.C. Barrett, D. Rugar, IBM J. of Res. and Dev. 39, 681, 1995. [35] H.J. Mamin, D. Rugar, Appl. Phys. Lett. 61, 1003, 1992. [36] H.J. Mamin, Appl. Phys. Lett. 69, 433, 1996. [37] J.A. Dagata, J. Schneir, H.H. Harary, C.J. Evans, M.T. Postek, J. Bennett, Appl. Phys. Lett. 56, 2001, 1990. [38] N. Kramer, J. Jorritsma, H. Birk, C. Schőnenberger, J. Vac. Sci. Technol. B 13, 805, 1995. [39] S.C. Minne, P. Flueckiger, H.T. Soh, C.F. Quate, J. Vac. Sci. Technol. B 13, 1380, 1995. [40] L. Tsau, D. Wang, K.L. Wang, Appl. Phys. Lett. 64, 2133, 1994. [41] H. Sugimura, T. Uchida, N. Kitamura, H. Masuhara, Appl. Phys. Lett. 63, 1288, 1993. [42] T. Thundat, L.A. Nagahara, P.I. Oden, S.M. Lindsay, M.A. George, W.S. Glaunsinger, J. Vac. Sci. Technol. A 8, 3537, 1990. [43] H.J. Song, M.J. Rack, K. Abugharbieh, S.Y. Lee, V. Khan, D.K. Ferry, D.R. Allee, J. Vac. Sci. Technol. B 12, 3720, 1994. [44] E.S. Snow, D. Park, P.M. Campbell, Appl. Phys. Lett. 69, 269, 1996. [45] P. Avouris, T. Hertel, R. Martel, Appl. Phys. Lett. 71, 285, 1997. [46] P.A. Fontaine, E. Dubois, D. Stievenard, J. Appl. Phys. 84, 1776, 1998. [47] E.S. Show, P.M. Campbell, Appl. Phys. Lett. 64, 1932, 1994. [48] H. Dai, N. Franklin, J. Han, Appl. Phys. Lett. 73, 1508, 1998. [49] M.A. McCord, Ph.D. Thesis, Stanford University 1987. [50] A. Majumdar, P.I. Oden, J.P. Carrejo, L.A. Nagahara, J.J. Graham, J. Alexander, Appl. Phys. Lett. 61, 2293, 1992. [51] S.W. Park, H.T. Soh, C.F. Quate, S.I. Park, Appl. Phys. Lett. 67, 2415, 1995. [52] R.D. Piner, J. Zhu, F. Xu, S. Hong, C.A. Mirkin, Science 283, 661, 1999. [53] S. Hong, J. Zhu, C.A. Mirkin, Science 286, 523, 1999. [54] K.B. Lee, S.J. Park, C.A. Mirkin, J.C. Smith, M. Mrksich. Science 295, 1702, 2002. [55] B.W. Maynor, Y. Li, J. Liu, Langmuir 17, 2575, 2001. [56] A. Noy, A.E. Miller, J.E. Klare, B.L. Weeks, B.W. Woods, J.J. DeYoreo, Nano Lett. 2, 109, 2002. [57] Y. Li, B.W. Maynor, J. Liu, J. Am. Chem. Soc. 123, 2105, 2001. [58] B.W. Maynor, S.F. Filocamo, M.W. Grinstaff, J. Liu, J. Am. Chem. Soc. 124, 522, 2002. [59] B.R Eggins, Chemical Sensors and Biosensors, Wiley, New York,2002. [60] 陳壽安,物理雙月刊,二十三卷,二期,2001。 [61] H. Shirakawa, S. Ikeda, Polymer, 2, 231, 1971. [62] R.L. Greene, G.B. Street, L.J. Suter, Phys. Rev. Lett. 34, 577, 1975. [63] H. Shirakawa, E.J. Lousi, A.G. MacDiarmid, C.K. Chiang, A.J. Hegger, J. Chem. Soc., Chem. Commun.16, 578, 1977. [64] T.V. Vernitskaky, O.N. Efimov, Russ. Chem. Rev. 66, 443,1997. [65] R. Hernandez, A.F. Diaz, R. Waltman, J. Bargon, J. Phy. Chem. 88, 3333, 1984. [66] J.-C. Chiang, A.G. MacDiarmid, Synth. Met. 13, 193, 1986. [67] B. Wessling, Synth. Met., 1991, 45, 119 [68] M. Gerard , A. Chaubey, B.D. Malhotra, Biosens. Bioelectron. 17, 345, 2002. [69] A.J. Heeger, In: Skotheim, T.A. (Ed.), Handbook of Conducting Polymers, vol. II. Marcel Dekker, New York, p. 729 and references therein, 1986. [70] The 2000 Nobel Prize in Chemistry-Information for the Public KUNGL. VETENSKAPSAKADEMIEN THE ROYAL SWEDISH ACADEMY OF SCIENCES October 10, 2000 http://nobelprize.org/chemistry/laureates/2000/public.html [71] A. Pron, Z. Kucharski, C. Budrowski, M. Zagorska, S. Krichene, J.Suwalski, G. Dehe, S. Lefeant, J. Chem. Phys. 83, 5923, 1989. [72] S.P. Armes, Synth. Met. 20, 365, 1987. [73] S. Machida, S. Miata, A. Techagumpuch, Synth. Met. 31, 311, 1989. [74] K.L. Tan, B.T.G. Tan, E.T. Kang, K.G. Neoh, Y.K. Ong, Phys. Rev.,B, Condens. Matter. 42, 7563, 1990. [75] J. Zhang, Y. She, B. Lu, Y. Zhou, K.F. Chin, J. Polym. Sci. 11, 334, 1993. [76] E.T. Kang, K.G. Neoh, Y.K. Ong, K.L. Tan, B.T.G. Tan, Macromolecules 24, 2822, 1991. [77] E.T. Kang, K.G. Neoh, T. Matsuyama, H. Yamaoka, Polym. Commun. 29, 201, 1988. [78] E.T. Kang, H.C. Ti, K.G. Neoh, T.C. Tan, Polym. J. 20, 399, 1988. [79] S. Rapi, V. Bocchi, G.P. Gardini, Synth. Met. 24, 217, 1988. [80] A.F. Diaz, K.K. Kanazawa, G.P. Gardini, J. Chem. Soc., Chem. Commun. 635, 1979. [81] S.N. Bladani, G. Parravano, Organic Electrochemistry (EdsMMBaizer, H Lund) (New York: Marcel Dekker, 1983) p. 995. [82] A.F. Diaz, K.K. Kanazawa, Extended Linear Chain Compounds (Ed. J S Miller) (New York: Plenum, 1983) p. 417. [83] R.A. Saraceno, J.G. Pack, A.G. Ewing, J. Electroanal. Chem. 197, 265, 1986. [84] E.M. Genies, G. Bidan, A.F. Diaz, J. Electroanal. Chem. 149, 101, 1983. [85] M. Gerard, A. Chaubey, B.D. Malhotra, Biosens. Bioelectron. 17, 345, 2002 [86] J. Shah, E. Wilkins, Electroanalysis 15, 157, 2003. [87] Biochemistry Basic: http://juang.bst.ntu.edu.tw/BCbasics/Enzyme12.htm [88] Trevor Palmer, Understanding Enzyme, 4th edition, published by Prentice Hall/Ellis Horwood, 1995. [89] Geoffrey L. Zubay, Biochemistry, 4th edition,published by Wm. C. Brown, 1998. [90] S. Gamati, J.H.T. Luong, A. Mulchandani, Biosens. Bioelectron. 6, 125, 1991. [91] T.P. Jones, M.D. Porter, Anal. Chem. 60, 404, 1988. [92] J. Li, L.S. Chia, N.K. Goh, S.N. Tan, J. Electroanal. Chem., 460, 234, 1999. [93] J.C. Vidal, E. Garcia, J.R. Castillo, Sensors and Actuators B, 57, 219, 1999. [94] W.J. Sung, Y.H. Bae, Biosens. Bioelectron. 18, 1231, 2003 [95] S. Fabiano, C. Tran-Minh, B. Piro, L.A. Dang, M.C. Pham, O. Vittori, Mater. Sci. Eng. C 21, 61, 2002. [96] L. Doretti, D. Ferrara, P. Gattolin, S. Lora, Talanta, 44, 859, 1997. [97] G.T. Constantinos, B.F. Ageliki, N.T. Pantelis, Electro. Commun. 7, 781, 2005. [98] J. Parellada, A. Narvaez, Biosens. Bioelectron. 12, 267, 1997. [99] F.T. Richard, S.S. Jerome, Handbook of Chemical and Biological Sensors, p5. [100] J.C. Vidal, E. Garcia, J.R. Castillo, Sensors and Actuators B 57, 219, 1999. [101] P. Mulchandani, A. Mulchandani, I. Kaneva, W.Chen, Biosens. Bioelectron. 14, 77, 1999. [102] T. You, O. Niwa, M. Tomita, S. Hirono, Anal. Chem. 75, 2080, 2003. [103] S. Iijima, Nature 354, 56, 1991. [104] S.J. Updike, G.P. Hicks, Nature 214, 986, 1967. [105] YSI:http://216.68.81.171/extranet/BTKL.nsf/447554deba0f52f2852569f500696b21/0f7ccb69a6ee82cf852569e70047cd17!OpenDocument [106] D.C. Tilotta, S. A. Merschman, Appl. Spectrosc 52, 106, 1998. [107] H. Raether, Surface plasmons on smooth and rough surfaces and on gratings, Springer-Verlag, Berlin, 1988. [108] G. Massobrio and M. Grattarola “ISFET-based biosensoe modeling with SPLCE, Sensors and Actuators B 1, pp. 401-407 1990. [109] 馮晉嘉,微小化生物感測器技術趨勢分析及發展政策建議,工業技術研究院,台北,2002。 [110] 黎世棊,奈米碳管/全氟磺酸聚合物/葡萄糖氧化酵素薄膜和奈米碳管/聚吡咯/葡萄糖氧化酵素薄膜做為葡萄糖生物感測器之探討,中興大學化學工程學研究所碩士論文,2005。 [111] A.J. Bard, I.R. Faulkner, Electrochemical Methods: Fundaments and Applications, Wily, New York, 2000. [112] 胡啟章,電化學原理與方法,五南圖書出版公司,台北, 2002。 [113] J.H. Hsu, C.Y. Lin, J. Vac. Sci. Technol. B 22, 2768,2004 [114] S.Asavapiriyant, G.K. Chandler, G.A. Gunawardena, D. Pletcher, J. Electroanal. Chem. 177, 229, 1984. [115] S. Jahromi, J. Dijkstra, E. van der Vegte, B. Mostert, Chemphyschem 8, 693, 2002. [116] C. Jérôme, R. Jérôme, Angew. Chem. Int. Ed. 37, 2488, 1998. [117] 林俊羽,使用原子力顯微鏡製造金屬奈米線與奈米電極,2004。 [118] S.N. Magonov, M.H. Whangbo, “Surface Analysis with STM and AFM”, VCH, 1996. [119] M.T. Bray, S.H. Cohen, M.L. Lightbody, “Atomic Force Microscopy/Scanning Tunneling Microscopy”, Plenum, 1995. [120] S.A.G. Evans, J.G. Terry, N.O.V. Plank, A.J. Walton, L.M. Kene, C.J. Campbell, P. Ghazal, J.S. Beattie, T.J. Su, J. Crain, A.R. Mount, Electrochem. Commun. 7, 125, 2005. [121] P.C.S. Hayfield, Platinum Met. Rev. 27, 2, 1983. [122] A.A. Karyzkina, L. Gorton, G. Marko-Varga, Anal. Chem. 72 , 1720, 2000. [123] S. Eddy, K. Warriner, I. Christie, D. Ashworth, C. Purkiss, P. Vadgama, Biosens. Bioelectron. 10, 831, 1995. [124] K.S. Boosh, B.R. Kowalski, Anal. Chem. 66, 783A, 1994. [125] T. Sainsbury, J. Stolarczyk, D. Fitzmaurice, J. Phys. Chem. B 109, 16310, 2005.zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3589-
dc.description.abstract本研究成功的在聚甲基丙烯酸甲酯(PMMA)的奈米孔道中利用電化學聚合製作出聚吡咯奈米線。PMMA奈米孔道的製作是在塗佈PMMA薄膜的導電玻璃基板(ITO)上,經由原子力顯微鏡(atom force microscope, AFM)以機械力微影(mechanical lithography)的方式所製備,將此奈米孔道模板透過電化學聚合的方法即可製作出聚吡咯奈米線,PMMA奈米孔道與聚吡咯奈米導線的表面形貌經由原子力顯微鏡的量測,可觀測出 PMMA奈米孔道的寬度與深度分別為150和37 nm左右,聚吡咯奈米導線的寬度為350 nm而長度為20 μm,利用導電式的原子力顯微鏡模組與導電式的探針可對聚吡咯奈米導線的導電特性進行鑑定,由原子力顯微鏡的電流分佈圖中,可明顯的辨別出摻雜後的聚吡咯奈米導線與PMMA薄膜的電流大小差異。藉由這些表面形貌的研究有效的證明了電化學聚合聚吡咯奈米導線於機械力微影的PMMA奈米孔道中的可行性。 為了將AFM機械力微影奈米孔道的技術應用於化學感測器與生物感測器的製備,在本研究的第二部份中將白金以電化學沉積的方式沉積於PMMA奈米孔道中取代聚吡咯以利用其電催化的特性。以安培法(amperometric)在電位為-500 mV下電化學沉積白金60秒於PMMA奈米孔道/ITO的模板後可製作出白金奈米導線,可經由原子力顯微鏡觀測出白金奈米導線的寬度、高度與長度分別約為450、225 nm和10 μm,製作不同條數的白金奈米導線電極來偵測H2O2,由安培圖的電流訊號可發現,10條與5條白金奈米導線的電極其電流訊號會分別比2條白金奈米導線的電極高出約4倍和2.5倍左右。在葡萄糖的試驗中以戊二醛(glutaradehyde, GDI)與葡萄糖氧化酵素(GOx)摻混的薄膜修飾於白金電極表面,即可對葡萄糖進行偵測。zh_TW
dc.description.abstractA novel approach for the fabrication of polypyrrole nanowires via electropolymerization within poly(methyl methacrylate) (PMMA) nanochannels on an indium tin oxide (ITO) substrate is reported. The nanochannels width and depth obtained by atomic force microscopy (AFM) mechanical lithography on PMMA coated ITO substrate are about 150 nm and 35 nm. The nanochannels act as templates for electropolymerization of polypyrrole nanowires. The morphology of PMMA nanochannels and polypyrrole nanowires were investigated by AFM. The polypyrrole nanowires are around 350 nm in width and 20 μm in length. The conducting properties of polypyrrole nanowires were identified by AFM with a conducting tip (CT-AFM). The AFM current image shows that the current difference can be distinguished between doped polypyrrole nanowires and PMMA thin film. The present methodology demonstrates the feasibility and effectiveness of electropolymerization of polypyrrole nanowires within PMMA nanochannels produced by AFM mechanical lithography. In order to apply this method to fabricate chemical sensor and biosensor, we replaced conducting polymers with platinum metal. After electrodepositing for 60 s at the potential of -500 mV versus Pt, the Pt nanolines width and height observed by AFM are about 450 nm and 225 nm, The length of Pt nanowires are 10μm. We fabricated different numbers of Pt nanowires patterns to examine H2O2 by amperometry. The result shows that the response current increased with the increased number of Pt nanowires.en_US
dc.description.tableofcontents總目錄 中文摘要 i 英文摘要 ii 總目錄 iv 表目錄 vi 圖目錄 vii 第一章 緒論 1 1.1前言 1 1.2原子力顯微術 2 1.2.1原子力顯微鏡簡介 2 1.2.2原子力顯微鏡操作原理 3 1.2.3原子力微影術 5 1.3 導電高分子 12 1.3.1 導電高分子的發展 12 1.3.2 導電高分子的傳導機制 12 1.3.3 導電高分子的聚合方法 14 1.3.4 聚吡咯(polypyrrole, PPy)的聚合方法及機制 14 1.3.5 導電高分子的應用 18 1.4生物感測器 18 1.4.1生物感測器的定義 18 1.4.2生物感測元件 19 1.4.3 酵素 20 1.4.4 傳感器的種類與應用 24 1.5電化學方法 28 1.5.1 循環伏安法(Cyclic Voltammetry, CV) 28 1.5.2 電沉積金屬時其成核的伏安行為 30 1.5.3 安培法 31 第二章 實驗方法與步驟 33 2.1 實驗藥品 33 2.2 實驗儀器 33 2.3 實驗步驟 35 2.3.1 聚吡咯奈米導線的製備 35 2.3.2 白金奈米導線的製備 36 2.3.3 GDI-GOx修飾白金奈米導線電極 37 2.3.4 電化學測試 38 第三章 結果與討論 39 3.1 利用電化學聚合聚吡咯奈米導線於機械力微影的PMMA奈米孔道內 39 3.1.1 PMMA薄膜經機械力微影後表面形貌的影響 39 3.1.2電化學聚合聚吡咯奈米導線 44 3.2 利用電化學沉積白金奈米導線於機械力微影的PMMA奈米孔道內 51 3.2.1 分子量996 K的PMMA機械力微影情況 51 3.2.2 探針於不同施力下對PMMA(MW 120 K)薄膜形貌的影響 55 3.2.3 電化學沉積白金奈米導線於PMMA奈米孔道的探討 59 3.2.4 白金奈米導線電極用於過氧化氫的試驗 70 3.2.5 GOx-GDI修飾白金奈米導線電極用於偵測葡萄糖的試驗 78 第四章 結論與未來展望 83 4.1結論 83 4.2未來展望 84 第五章 參考文獻 86 表目錄 表1- 1 常見的導電高分子 13 表3- 1 不同電沉積時間對Pt奈米導線高度與寬度的關係 67 表3- 2 不同數量的白金奈米導線電極偵測H2O2之H2O2添加時間濃度 73 表3- 3 不同數量白金奈米導線之電極對於偵測H2O2的效能參數 78 表3- 4 白金奈米導線電極偵測glucose之添加時間及濃度。白金奈米導線:5條 81 圖目錄 圖3- 1 ITO導電玻璃之AFM 3-D圖形(a)表面形貌圖(b)同步電流分佈圖 41 圖3- 2 PMMA薄膜之AFM 3-D圖形(a)表面形貌圖(b)同步電流分佈圖 41 圖3- 3 旋轉塗佈於ITO基板的PMMA膜厚分析(a)表面形貌圖(b)同步電流分佈圖 42 圖3- 4 AFM機械力微影時探針移動方向示意圖 43 圖3- 5 機械力微影之PMMA表面形貌及奈米孔道深度剖面圖 43 圖3- 6 聚吡咯奈米導線製程示意圖 46 圖3- 7 吡咯聚合於PMMA奈米孔道的循環伏安圖;掃描圈數:10圈,掃描速度:100 mV/s 47 圖3- 8 PMMA奈米孔道於吡咯電化學聚合前(a)與後(b)的AFM表面形貌圖及深度剖面圖 48 圖3-9 摻雜前的聚吡咯奈米線(a)表面形貌圖(b)電流分佈圖。探針電壓:8 V。 49 圖3- 10 於0.1 M NaClO4水溶液中以 +200 mV摻雜100秒後的聚吡咯奈米導線(a)表面形貌圖(b)電流分佈圖。探針電壓:8 V。 50 圖3- 11 MW 996 K的PMMA經機械力微影後堆積物之表面形貌圖,探針施力(a)2.8 μN(b)3.4 μN。探針位移速度:0.15 μm/s。 52 圖3- 12 MW 996 K的PMMA經機械力微影後之表面形貌圖,探針施力(a)由左至右分別為1.4、2.4、2.6、3.0、3.4 μN(b)2.6 μN 。探針位移速度:0.15 μm/s。 53 圖3- 13 MW 996 K的PMMA薄膜表面形貌及深度剖面圖(a)膜厚36 nm(b)膜厚26 nm 。 54 圖3- 14 MW 120K的PMMA表面形貌及深度剖面圖 56 圖3- 15 不同施力對PMMA(MW 120 K)薄膜影響之表面形貌圖(in liquid) 57 圖3- 16 壓電陶瓷掃描管運作機制示意圖(a)掃描時移動軌跡(b)橫向位移的耦合現象(c)電壓與伸縮量的關係。 58 圖3- 17 MW 120 K的PMMA膜厚31 nm之奈米孔道及深度剖面圖 59 圖3- 18 1 mM K2PtCl6在0.1 mM H2SO4(pH 4)水溶液中電沉積Pt於ITO基材之循環伏安圖;掃描速度:50 mV/s 61 圖3- 19 電沉積白金前的奈米孔道表面形貌圖 62 圖3- 20 電沉積白金2秒後的奈米孔道表面形貌圖 62 圖3- 21 電沉積白金5秒後的奈米孔道表面形貌圖 63 圖3- 22 電沉積白金10秒後的奈米孔道表面形貌圖 63 圖3- 23 電沉積白金15秒後的奈米線表面形貌圖 64 圖3- 24 電沉積白金30秒後的奈米線表面形貌圖 64 圖3- 25 電沉積白金60秒後的奈米線表面形貌圖 65 圖3- 26 電沉積白金120秒後的奈米線表面形貌圖 65 圖3- 27 白金於不同電沉積時間下與白金奈米導線(a)高度(b)寬度的關係 66 圖3- 28 不同電沉積時間之白金奈米導線表面形貌圖(上)及電流分佈圖(下),電沉積時間(a)15秒(b)30秒(c)60秒(d)120秒 69 圖3- 29 (a)5條PMMA奈米孔道;(b)2條白金奈米導線;(c)5條白金奈米導線 之電極在0.1 M KCl含有濃度為50 mM的Fe(CN)64-/3- 氧化還原系統之循環伏安圖。掃描速度:20 mV/s 69 圖3- 30 白金奈米導線電極於0.1 M PBS(pH 7)對(a)未加入H2O2(b)加入4 mM H2O2掃描之循環伏安圖。白金奈米導線:2條 72 圖3- 31 白金奈米導線電極於0.1 M PBS(pH 7)對(a)未加入H2O2(b)加入4 mM H2O2掃描之循環伏安圖。白金奈米導線:5條 72 圖3- 32 白金奈米導線電極於0.1 M PBS(pH 7)對(a)未加入H2O2(b)加入4 mM H2O2掃描之循環伏安圖。白金奈米導線:10條 73 圖3- 33 白金奈米導線電極偵測不同濃度H2O2之安培圖。白金奈米導線:2條,操作電位:+700 mV(vs. Ag/AgCl) 74 圖3- 34 以白金奈米導線電極偵測H2O2於0.1 M PBS的校正曲線。白金奈米導線:2條,操作電位:+700 mV(vs. Ag/AgCl) 74 圖3- 35 白金奈米導線電極偵測不同濃度H2O2之安培圖。白金奈米導線:5條,操作電位:+700 mV(vs. Ag/AgCl) 75 圖3- 36 以白金奈米導線電極偵測H2O2於0.1 M PBS的校正曲線。白金奈米導線:5條,操作電位:+700 mV(vs. Ag/AgCl) 75 圖3- 37 白金奈米導線電極偵測不同濃度H2O2之安培圖。白金奈米導線:10條,操作電位:+700 mV(vs. Ag/AgCl) 76 圖3- 38 以白金奈米導線電極偵測H2O2於0.1 M PBS的校正曲線。白金奈米導線:10條,操作電位:+700 mV(vs. Ag/AgCl) 76 圖3- 39 (a)5條PMMA/ITO奈米孔道與(b)2(c)5(d)10條白金奈米導線電極偵測不同濃度H2O2之安培圖。操作電位:+700 mV(vs. Ag/AgCl) 77 圖3- 40 以白金奈米導線電極偵測H2O2於0.1 M PBS的校正曲線。操作電位:+700 mV(vs. Ag/AgCl) 77 圖3- 41 GOx-GDI薄膜修飾前的白金奈米導線電極表面形貌。白金奈米導線:5條 79 圖3- 42 GOx-GDI薄膜修飾白金奈米導線電極之表面形貌。白金奈米導線:5條 80 圖3- 43 GDI薄膜修飾於白金奈米導線電極的表面形貌。白金奈米導線:5條 80 圖3- 44 GOx-GDI薄膜修飾白金奈米導線電極偵測glucose於0.1 M PBS對(a) 未加入H2O2 (b)1.8 mM glucose掃描之循環伏安圖。白金奈米導線:5條,掃描速度10 mV/s 81 圖3- 45 GOx-GDI薄膜修飾白金奈米導線電極偵測不同濃度的glucose之安培圖。白金奈米導線:5條,操作電位:+700 mV(vs. Ag/AgCl) 82 圖3- 46 GOx-GDI薄膜修飾白金奈米導線電極偵測glucose於0.1 M PBS 的校正取線。白金奈米導線:5條,操作電位:+700 mV(vs. Ag/AgCl) 82zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2606200616141600en_US
dc.subjectconducting polymeren_US
dc.subject導電高分子zh_TW
dc.subjectAFM lithographyen_US
dc.subjectnanowireen_US
dc.subject原子力微影術zh_TW
dc.subject奈米導線zh_TW
dc.title利用原子力機械力微影製作導電高分子和白金奈米導線用於感測器之探討zh_TW
dc.titleElectrochemical Synthesis of Polypyrrole and Pt Nanowires within PMMA Nanochannels Produced by AFM Mechanical Lithographyen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:化學工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.