Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3591
DC FieldValueLanguage
dc.contributor戴憲弘zh_TW
dc.contributor吳震裕zh_TW
dc.contributor李榮和zh_TW
dc.contributor.advisor鄭如忠zh_TW
dc.contributor.author王姿雅zh_TW
dc.contributor.authorWang, Tzu-Yaen_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-06T05:32:14Z-
dc.date.available2014-06-06T05:32:14Z-
dc.identifierU0005-2707200621405200zh_TW
dc.identifier.citation參考文獻 1. R.Chandra, R. Rustgi, Prog. Poly. Sci., 23, 1273 (1998) 2. Y. Someya, T. Nakazato, N. Teramoto, M. Shibata, J. Appl. Polym. Sci., 91, 1463 (2004) 3. A. Michael, D. Philippe, Mater. Sci. Eng., 28, 1 (2000) 4. J. S. Chen, M. D. Poliks, C. K. Ober, Y. Zhang, U. Wiesner, E. P. Giannelis, Polymer, 43, 4895 (2002) 5. A. K. Mohanty, M. Misra, G. Hinrichsen, Macromol. Mater. Eng., 1, 276 (2000) 6. 沈曉復,塑膠工業技術發展中心,環境生物材料講義 7. 美國飼料穀物協會, 生物可分解性塑膠, 美國飼料殼物協會, 第1頁 (1997) 8. T. Fujimaki, Polym. Degrad. Stab., 59, 209 (1998) 9. S. S. Ray, M. Okamoto, Prog. Polym. Sci., 28, 1539 (2003) 10. H. Van Olphen An Introduction to Clay Colloid Chemistry, 2nd ed. Wiley (1977) 11. 尹宗凡,蒙托土界面改質對對位聚苯乙烯奈米複合材料結晶型態之研究,義守大學材料工程研究所碩士論文.(2002) 12. D. J. Kim, W. S. Kim, D. H. Lee, K. E. Min, L. S. Park, I. K. Kang, I. R. Jeon, K. H. Seo, J. Appl. Polym. Sci., 81, 1115 (2001) 13. M. A. Khan, K. M. Idriss Ali, F. Yoshii, K. Makuuchi, Die. Angew. Makromol. Chem., 272, 94 (1999) 14. C. L. Song, F. Yoshii, T. Kume, J.Macromol.Sci-Pure Appl.Chem, A38, 961 (2001) 15. M. Suhartini, H. Mitomo, F. Yoshii, N. Nagasawa, T. Kume, J. Polym. Environ, 9, 4 (2001) 16. S. S. Ray,K. Okamoto,P. Maiti,and M. Okamoto, J. Nanosci. Nanotech., 2 , 1 (2002) 17. K. Okada,T. Mitsunaga and Y. Nagase, Korea-Australia Rheology Journal, 15, 43 (2003) 18. S. S. Ray,K. Okamoto,and M. Okamoto, Macromolecules, 36, 2355 (2003) 19. K. Okamoto,S. S. Ray,M. Okamoto, J. Polym. Sci. PartB: Polym. Phys., 45, 3160 (2003) 20. Y. Someya, T. Nakazato, N. Teramoto, M. Shibata, J. Appl. Polym. Sci., 91,1463 (2004) 21. G. X. Chen, J. S. Yoon, Polym. Degrad. Stab., 88, 206 (2005) 22. G. X. Chen, H. S. Kim, E. S. Kim, J. S. Yoon, Polymer, 46, 11829 (2005) 23. G. X. Chen, E. S Kim, J. S. Yoon, J. Appl. Polym. Sci, 98, 1727 (2005) 24. G. X. Chen, J. S. Yoon, J. Polym. Sci. PartB: Polym. Phys., 43, 478 (2005) 25. G. X. Chen, J. S. Yoon, J. Polym. Sci. PartB: Polym. Phys., 43, 817 (2005) 26. Z. M. Li, Z. Y. Cheng, Mater.Res.Soc.Symp.Proc., 889, 1 (2006) 27. 許嘉惠,聚對苯二甲酸乙二酯結晶行為-熱歷史效應,元智大學化工系碩士論文.(2003) 28. Ulf. W. Gedde, Polymer Physics, Chapman & Hall, p176 (1995) 29. W. Xu, G. Liang, W. Wang, S. Tang, P. He, W. P. Pan, J. Appl. Polym. Sci., 88, 3093 (2003) 30. T. Ohkita, S. H. Lee, J. Appl. Polym. Sci., 97, 1107 (2005) 31. K. Ishida, S. I. Han, Y. Inoue, S. S. Im, Macromol.Chem.Phys.,206, 1028 (2005) 32. M. Ren, J. Song, C. Song, H. Zhang, X. Sun, Q. Chen, H. Zhang, Z. Mo, J. polym. Sci. PartB: Polym. Phys., 43, 3231 (2005) 33. D. Wu, C. Zhou, X. Fan, D. Mao, Z. Bian, J. Appl. Polym. Sci., 99, 3257 (2006) 34. R. K. Bhardwaj, Macromolecules, 34, 9189 (2001) 35. M. A. Khan, K. M. Idriss Ali, F. Yoshii, K. Makuuchi, Polym. Degrad. Stab., 63, 261 (1999) 36. K. Cho, J. Lee, K. Kwon, J. Appl. Polym. Sci., 79, 1025 (2001) 37. C. Tsutsumi, N. Hayase, K. Nakagawa, S. Tanaka, Y. Miyahara, Macromol. Symp., 197, 431 (2003) 38. I. Taniguchi, S. Nakano, T. Nakamura, A. El-Salmawy, M.Miyamoto, Y. Kimura, Macromol. Biosci., 2, No.9 (2002) 39. N. Honda, I. Taniguchi, M. Miyamoto, Y. Kimura, Macromol. Biosci., 3, No.3/4 (2003) 40. B. Bruthum, P. Zingsheim, Handbook of Polymeric Foams and Foams Technology; D. Klempner, K. C. Frisch, Eds., Hanser p.187 (1991) 41. T. J. Pinnavaia, G. W. Beall, Polymer-clay Nanocomposites, John Wiley & Sons (2000) 42. Z. Zhao, W. Yu, X. Chen, Radiat. Phys. Chem., 65, 173 (2002) 43. R. K. Bharadwaj, A. R. Mehrabi, C. Hamilton, C. Trujillo, M. Murga, R. Fan, A. Chavira, A. K. Thompson, Polymer, 43, 3699 (2002) 44. Y. T. Shieh, C. M. Liu, J. Appl. Polym. Sci. ,83, 2548 (2002) 45. X. Kong, X. Yang, E. Zhou, Polym. Eng. Sci., 41, No.5 (2001)zh_TW
dc.identifier.urihttp://hdl.handle.net/11455/3591-
dc.description.abstract摘要 本研究藉由將十六烷基的陽離子型界面活性劑改質之蒙脫土(MMT),分散在聚琥珀酸丁酯中,利用溶劑插層法製備出聚琥珀酸丁酯/蒙脫土之奈米複合材料(PBSMC)。另一方面並添加1phr 過氧化二異丙苯到PBSMC中,隨即進行交聯反應,製備出交聯型聚琥珀酸丁酯/蒙脫土奈米複合材料(PBSDMC)。由WAXD分析發現經改質後蒙脫土層間距改變,而進一步由TEM觀察PBSMC、PBSDMC系列材料,發現在蒙脫土含量為5wt%時其為有序部分插層、部分脫層結構。由DMA分析發現,當蒙脫土含量為10wt%之PBSDMC材料,在交聯結構與聚琥珀酸丁酯/蒙脫土作用之影響下,其玻璃轉移溫度可提昇10.5℃左右。且隨著蒙脫土含量的增加,PBSMC和PBSDMC系列材料在儲存模數(E’)和損失模數(E”)隨之提升。經由非等溫結晶動力學研究蒙脫土則發現,隨著蒙脫土含量增加,會使得結晶溫度往低溫方向偏移,結晶度下降,結晶半生期較長。在氧氣阻氣性質方面,不論是PBSMC或PBSDMC系列材料,隨蒙脫土含量增加,均可使材料的阻氣性提升,最高可提升至46.64%。藉由酵素進行生物分解性分析,發現結晶度會影響材料之分解速率,因為隨著蒙脫土含量增加,結晶程度降低,且蒙脫土末端的OH官能基會加速水解反應,因而提升材料的生物分解性。zh_TW
dc.description.abstractAbstracts In this research, two types of nanocomposites were prepared and characterized.For the first type, poly(butylene succinate) (PBS)-clay nanocomposites (PBSMC) were prepared by dispersing organically modified montmorillonite (MMT) into polymer solution. On the other hand, PBSMC were simultaneously crosslinked using dicumyl peroxide (DCP).As a result,the crosslinked PBS-clay (PBSDMC) nanocomposites were obtained. Montmorillonite modified with hexadecylpyridium chloride were used for these two nanocomposites at various concentration (1wt%, 3wt%, 5wt% and 10wt%). Wide angle X-ray diffraction (WAXD) studies revealed these two types of nanocomposites with different basal spacing comparing to neat MMT. Transmission electron microscopy (TEM) showed ordered intercalation and partial exfoliation structures in these nanocomposites with 5wt% loading level. According to WAXD and TEM analysis, we proved that PBSMC and PBSDMC successfully obtained via solution intercalation method. The dynamic mechanical analysis (DMA) showed that glass transition temperature (Tg), storage modulus(E') and loss modulus(E”) can be enhanced by the addition of the modified MMT. In particular, the PBSDMC sample with 10wt% loading level of MMT demonstrated 10.5℃ enhancement in Tg. This was attributed to the crosslinked structure and PBS-MMT entanglement. To further study how did MMT dispersion in PBS influence the crystallization, nonisothermal crystallization kinetics were investigated by using differential scanning calorimeter (DSC) to study crystallization characteristics of PBSMC and PBSDMC. For a given cooling rate, crystallization temperature (Tc) and crystallinity decreased with increasing MMT concentration in PBS. In addition, Oxygen permeability rate of nanocomposites decreased with increasing MMT content. It is important to note that enzymetic hydrolysis of PBSMC and PBSDMC were improved by blending with MMT.en_US
dc.description.tableofcontents目錄 一、緒論 1 1.1 前言 1 1.2 生物分解性高分子材料介紹 2 1.3聚琥珀酸丁酯的簡介 3 1.4 奈米黏土之簡介 6 1.5 高分子/黏土奈米複合材料的製備方式 7 二、文獻回顧與研究方法 8 2.1 PBS自身交聯 8 2.2 PBS/蒙脫土奈米複材 10 2.3 PBS自身交聯/蒙脫土奈米複材 12 2.4 PBS非恆溫結晶動力學 12 2.5 PBS氧氣滲透性(Permeability)性質 16 2.6 PBS生物分解性(Biodegradation) 17 2.7 研究動機 20 三、實驗內容 22 3.1實驗流程 22 3.2 實驗概述 25 3.3 實驗藥品 25 3.4 儀器設備 27 3.4.1分析儀器 27 3.4.2 其他儀器 28 3.5 實驗步驟 29 3.5.1 蒙脫土吸附CPC實驗 29 3.5.2 PBS自身交聯(Crosslinking) 30 3.5.3 PBS/蒙脫土複材之製備 30 3.5.4 PBS/蒙脫土複材交聯之製備 30 3.5.5 生物分解性實驗 31 3.5.6 儀器測試方法及條件 32 四、結果與討論 35 4.1 蒙脫土表面改質 35 4.2 PBS自身交聯之反應監控和交聯程度(Gel fraction)分析 37 4.2.1 PBS自身交聯(PBS2D)反應監控分析 37 4.2.2 PBS交聯程度(Gel fraction)分析 39 4.3 溶液法製備PBS/蒙脫土複合材料之性質分析 39 4.3.1 複合材料之廣角X-ray繞射分析(WAXD) 40 4.3.2 複合材料之穿透式電子顯微鏡分析(TEM) 42 4.3.3 複合材料之熱重損失分析(TGA) 45 4.3.4 複合材料之動態機械性質分析(DMA) 47 4.3.5 複合材料之非等溫結晶動力學探討 52 4.3.6 複合材料之阻氣性質分析 72 4.3.7 複合材料之生物分解性質分析 75 五、結論 79 六、參考文獻 81 表目次 表1-1 昭和高分子公司所生產之PBS規格 4 表1-2 生物分解性高分子之應用 5 表3-1各個樣品成分的重量比及代號說明 31 表4-1 PBSMC和PBSDMC系列材料之WAXD分析 42 表4-2 PBSMC與PBSDMC系列之熱重損失分析 47 表4-3 PBSMC與PBSDMC系列材料DMA分析數據 52 表4-4 PBS、PBSMC及PBSDMC系列複合材料之數據整理表 54 表4-5 各個樣品之阻氣性質分析數據 75 表4-6 各個樣品生物分解14天之分析 76zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2707200621405200en_US
dc.subjectPoly(butylene succinate)en_US
dc.subject聚琥珀酸丁酯zh_TW
dc.subjectMontmorilloniteen_US
dc.subjectSolution intercalationen_US
dc.subject蒙脫土zh_TW
dc.subject溶液插層zh_TW
dc.title交聯型聚琥珀酸丁酯奈米複合材料之探討zh_TW
dc.titleA Study of Crosslinked Poly(butylene succinate)/Layered Silicate Nanocompositesen_US
dc.typeThesis and Dissertationzh_TW
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.grantfulltextnone-
Appears in Collections:化學工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.