Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3596
DC FieldValueLanguage
dc.contributor戴憲弘zh_TW
dc.contributorShenghong A. Daien_US
dc.contributor林慶炫zh_TW
dc.contributor李訓清zh_TW
dc.contributor劉英麟zh_TW
dc.contributorChing-Hsuan Linen_US
dc.contributorHsun-Tsing Leeen_US
dc.contributorYing-Ling Liuen_US
dc.contributor.advisor鄭如忠zh_TW
dc.contributor.advisorRu-Jong Jengen_US
dc.contributor.author吳旻諭zh_TW
dc.contributor.authorWu, Min-Yuen_US
dc.contributor.other中興大學zh_TW
dc.date2007zh_TW
dc.date.accessioned2014-06-06T05:32:15Z-
dc.date.available2014-06-06T05:32:15Z-
dc.identifierU0005-2908200615410300zh_TW
dc.identifier.citation1. E. L. O'brien, F. M. Beringer, R. B. Mesrobian, J. Org. Chem. , 1957, 79, 6238. 2. E. L. O'brien, F. M. Beringer, R. B. Mesrobian, J. Org. Chem. , 1958, 81, 1506. 3. F. C. Baines, J. H. Grezlak, A.V. Tobolsky, J. Polym. Sci. Polym, Chem., 1969, 7, 3297. 4. E. L. O'brien, F. M. Beringer, R. B. Mesrobian, J. Org. Chem., 1957, 79, 6238. 5. E. L. O'brien, F. M. Beringer, R. B. Mesrobian, J. Org. Chem., 1958, 81, 1506 6. B. M. Baysal, J. Appl. Polym. Sci., 1996, 60, 1369. 7. D. S. Masterson, J. Am. Chem. Soc., 2004, 126, 720. 8. N. Uyanik, H. Yildirim, N. Kizilcan, A. Akar, Angew. Makromol. Chem., 1991, 191, 1. 9. Y. Yaci, H. Yildirim, E. Altun, B. M. Baysal, J. Appl. Polym. Sci., 1992, 44, 367. 10. Y. Yagci, M. Acar, G. Hizal, H. Yildirim, B. M. Baysal, Angew. Makromol. Chem., 1987, 154, 169. 11. Y. Yagi, H. Yildirim, E. Altun, B. M. Baysal, J. Appl. Polym. Sci., 1992, 45, 375. 12. A. J. Pasquale, T. E. Long, Macromolecules, 1999, 32, 7954. 13. J. S. Wang, K. Matyjaszewski, J. Am. Chem. Soc., 1995, 117, 5614. 14. J. Chiefari, Y. K. Chong, F. Ercole, J. Krstina, J. Jefery, Macromolecules, 1998, 31, 5559. 15. H. Yildirim, B. M. Baysal, Angew. Makromol. Chem., 1990, 181, 103. 16. I. Yilgör, B. Baysal, Angew. Makromol. Chem., 1985, 186, 463. 17. D.H. Solomo, E. Rizzardo, P. Cacioli, US Patent, 1985, 4, 581 18. R. P. N. Veregin, M. K. Georges, G. K. Hamer, P.M. Kazmaier, Macromolecules, 1995, 28, 4391 19. R. P. N. Veregin, M. K. Georges, G. K. Hamer, P.M. Kazmaier, Macromolecules, 1993, 26, 2987. 20. D. Mardare, T. Shigemoto, K. Matyjaszewski, Polymer Preprints, 1994, 35, 557. 21. C. J. Hawker, J. Am. Chem. SOC., 1994, 116, 11185. 22. D. Greszta, K. Matyjaszewski, Macromolecules, 1996, 29, 7661. 23. C. J. Hawker, Acc. Chem. Res., 1997, 30, 373. 24. C. J. Hawker, A. W. Bosman, E. Harth, Chem. Rev., 2001, 101, 3661. 25. M. K. Georges, N. A. Listigovers, P. G. Odell, B. Keoshkerian, Marcomolecules, 1996, 29, 8992. 26. G. G. Barclay, M. King, R. Sinta, Polymer Preprinst, 1997, 38,902. 27. X. Chen, B. Gao, K. Jorgen, B. Walther, Polymer, 1998, 39, 911. 28. S. Kobatake, H. J. Harwood, R. P. Quirk, Macromolecules, 1997, 30, 4238. 29. T. Emrick, W. Hayes, J. M. J. Frechet, J. Polym. Sci. Polym. Chem., 1999, 37, 3748. 30. C. K. Kim, E. S. Song, H. J. Kim, J. K. Kim, Y. C. Kim, C. Kim, Poly. Mater. Sci. Eng., 2004, 91, 536. 31. M. R. Leduc, C. J. Hawker, J. Dao, J. M. J. Frechet, J. Am. Chem. Soc., 1996, 118, 11111. 32. M. E. Mackay, Y. Hong, M. Jeong, S. Hong, T. P. Russell, C. J. Hawker, R. Vestberg, J. F. Douglas, Langmuir, 2002, 18, 1877. 33. M. E. Mackay, Y. Hong, M. Jeong, B. M. Tande, N. J. Wagner, S. Hong, S. P. Gido, R. Vestberg, C. J. Hawker, Macromolecules, 2002, 35, 8391. 34. D. M. Brian, R. L. Jeremy, E. L. Timothy, Macromolecules, 2004, 37, 9331 35. K. Matyjaszewski, T. Shigemoto, J. M. J. Frechet, M. Leduc, Macromolecules, 1996, 29, 4167. 36. R. M. Ho, Y. W. Chiang, C. C. Tsai, C. C. Lin, B, T. Ko, B. H. Huang, J. Am. Chem. Soc., 2004, 126, 2704. 37. J. C. Hodges, L. S. Harikrishnan, S. Ault-Justus, J. Comb. Chem., 2000, 2, 80. 38. R. Francis, D. Taton, J. Logan, P. Masse, Y. Gnanou, R. S. Duran, Macromolecules, 2003, 36, 8253. 39. M. Husseman, E.E. Malmstron, M. McNamara, M. Mate, D. Mecerreyes, D.G. Benoit, J. L. Hedrick, P. Manasky, E. Huang, T.P. Russell, C.J. Hawker, Macromolecules, 1999, 32, 1424. 40. A.W. Bosman, A. Heumann, G. Klaerner, D. Benoit, J.M. J. Frechet, C.J. Hawker, J. Am. Chem. Soc., 2001, 123, 6461. 41. M. K. Georges, K. A. Moffat, R. P. N. Veregin, P. M. Kazmaier, G. K. Hamer, Poly. Mater. Sci. Eng., 1993, 69, 305. 42. F. D'Agosto, R. Hughes, M. T. Charreyre, C. Pichot, R. G. Gilbert, Macromolecules, 2003, 36, 621. 43. T. Prodpan, V.L. Dimonie, E. D. Sudol, M. El-Asser, Poly. Mater. Sci. Eng., 1999, 80, 534. 44. A. Akelah, A. Moet, J. Mater. Sci., 1996, 31, 3589. 45. U. Velten, R. A. Shelden, W. R. Caseri, U. W. Suter, Y. Li, Colloids and Surfaces.A, 1999, 154, 87. 46. H. G. G. Dekking, J. Appl. Polym. Sci., 1967, 11, 23. 47. C. Kato, K. Kuroda, H. Takahara, Clays Clay Miner., 1981, 29, 294. 48. A. Moet, A. Akelah, Materials Letters, 1993, 18, 97. 49. L. P. Meier, R. A. Shelden, W. R. Caseri, U. W Suter, Macromolecules, 1994, 27, 1637. 50. L. Biasci, M. Aglietto, G Ruggeri, F. Ciardelli, Polymer, 1994, 35, 3296. 51. J. G. Doh, I. Cho, Polymer Bulletin, 1998, 41, 511. 52. M. Laus, M. Camerani, M. Lelli, K. Sparnacci, F. Sandrolini, J. Mater. Sci., 1998, 33, 2883. 53. M. W. Weimer, H. Chen, E. P. Giannelis, D. Y. Sogah, J .Am. Chem. Soc., 1999, 121, 1615. 54. X. Fu, S. Qutubuddin, Materials Letters, 2000, 42, 12. 55. X. Fu, S. Qutubuddin, Polymer, 2001, 42, 807. 56. D. Jianbo, Y. S. Dotsevi, Macromolecules, 2006, 39, 1020. 57. E. P. Giannelis, Advanced Materials, 1996, 8, 29. 58. T. Fukuda, A. Goto, K. Ohno, Y. Tsujii, J. Am. Chem. Soc., 1998, 120, 9159. 59. T. Fukuda, T. Terauchi, A. Goto, K. Ohno, Y. Tsujii, T. Miyamoto, Macromolecules, 1996, 29, 6393. 60. T. Saegusa, Pure Apppl. Chem., 1995, 67, 1965. 61. Zhang Jinguo, Polym Degrad Stab,1999,91,358 62. Wang Dongyan, Polym Degrad Stab. 2003, 80, 171en_US
dc.identifier.urihttp://hdl.handle.net/11455/3596-
dc.description.abstract本研究為開發一新型活性聚合起始劑,並將其應用於聚苯乙烯(PS)之活性自由基高分子聚合(living free radical polymerization, LFRP)反應。利用實驗室開發的azetidine-2,4-dione (Aze)官能基為起始物,加入t-butyl hydroperoxide (TBHPO)過氧化物進行開環反應,生成過氧化酯(Peroxide Ester)中間體,再導入2,2,6,6-tetramethylpiperidinoxy free radical (TEMPO) 形成穩定之活性聚合起始劑。藉由過氧化物結構之改變,及起始端與可逆自由基抑制機制導入,製備出單一分子量分佈之聚苯乙烯。此外實驗中將探討單官能基(Mono-azeidine-2-4-dione, Mono-Aze)與雙官能基(Bis-azeidine-2-4-dione, Bis-Aze)活性聚合起始劑之動力學常數與分子量成長。由結果發現分子量皆呈現線性成長,其動力學常數分別為4.1×10-5 sec-1與4.6×10-5 sec-1;在相同的轉化率下,由Bis-Aze所聚合之聚苯乙烯分子量為Mono-Aze的兩倍,且分子量分佈依舊維持單一分子量分佈分別為1.45與1.3。 再者利用Bis-one-TEMPO系列官能基之反應選擇性,導入一具備芳香族及脂肪族雙胺化合物,生成Bis-one-amine化合物,利用鹽酸酸化後形成四級胺鹽之Bis-one-amine-salt界面活性劑,以用離子交換的方法插層進入蒙脫土中,其結果可由XRD觀察到層間距增加為38Å且有機/無機比為52%所證實。在聚苯乙烯複合材料方面,將先前所改質之有機化蒙脫土,在不同時間及濃度下探討聚苯乙烯分子量成長對於蒙脫土層間距之影響。由TEM結果顯示,當蒙脫土/苯乙烯的比例為3/97,反應時間兩小時,蒙脫土呈現部分脫層與部分撐層(15-19.6nm)型態,此時分子量約為11000;當比例降為1/999,反應時間8小時,聚苯乙烯分子量成長至86000,此聚苯乙烯複合材料之機械強度可提升至14.5MPa。zh_TW
dc.description.abstractIn this work, we developed a novel living free radical polymerization (LFRP) initiator which consists of azetidine-2,4-dione (Aze) functional group as the starting material. The Aze functional group was first reacted with t-butyl hydroperoxide (TBHPO) to form peroxide ester intermediate after ring opening reaction and subsequently combined with 2,2,6,6-tetramethylpiperidinoxy (TEMPO) to build a stable LFRP initiator. By incorporating hydroperoxide into structure and reversible free radical composed of restrained and promotive effect, the molecular distribution can be effortlessly controlled. Furthermore, two types of LFRP initiators were utilized to analyze the kinetic constant and evolution of molecular weight. The kinetic constants of Mono-TEMPO-initated and Bis-TEMPO-initated polymerizations were 4.110-5 sec-1 and 4.610-5 sec-1, respectively. Both Mono-TEMPO-initated and Bis-TEMPO-initated polymers still maintained narrow polydispersity in the range of 1.3-1.45. Moreover, the molecular weight of Bis-TEMPO-initated polymer was two times larger than that of Mono-TEMPO-initated polymer under the same conversion as anticipated. Montmorillonite (MMT) is the most commonly used layered silicate with high aspect ratio. Employing suitable surfactants or polymers could achieve different natures of morphologies: intercalated, intercalated-and-flocculated, and exfoliated. Therefore, an initator, Bis-one-amine-salt surfactant was incorporated into MMT and the XRD spectrum indicated that the d-spacing of modified MMT was enlarged to 38Å. The initiators could be tethered to the galleries of layered MMT hosts followed by intercalation and polymerization of styrene gave directly a dispersed polystyrene-MMT nanocomposite. The XRD of nanocomposite revealed that the layers were exfoliated as evidenced by the absence of any diffraction peak. Moreover, the transmission electron microscopy (TEM) exhibited exfoliated and intercalated morphology. As the molecular weight of polystyrene approached to 86000, a tensile strength of 14.5Mpa was achieved.en_US
dc.description.tableofcontents誌謝-----------------------------------------------------------------------------------Ⅰ 摘要 Ⅱ Abstract Ⅲ 目錄 Ⅴ 表目錄 Ⅶ 圖目錄 Ⅷ 一、 序論 1 1.1前言 1 1.2活性自由基聚合 2 1.3總體聚合法 5 1.4活性自由基聚合動力學 6 1.5奈米複材簡介 11 二、 文獻回顧與研究動機 14 2.1活性聚合文獻 14 2.2 Polystyrene/MMT 相關文獻 17 2.3實驗動機 19 三、 實驗部份 21 3.1實驗藥品 21 3.2實驗儀器 24 3.3研究方法 25 3.4合成方法 29 3.4.1 單官能基起始劑系統 29 3.4.1.1 Mono-Aze之合成 30 3.4.1.2 Mono-Peroxide之合成 30 3.4.1.3 Mono-TEMPO之合成 30 3.4.2 雙官能基起始劑系統 30 3.4.1.1 Bis-Aze之合成 30 3.4.1.2 Bis-Peroxide之合成 31 3.4.1.3 Bis-TEMPO之合成 31 3.4.3 聚苯乙烯之合成 32 3.4.4 新型活性起始劑之合成與應用 33 3.4.4.1 Bis-one-Peroxide之合成 33 3.4.4.2 Bis-one-TEMPO之合成 33 3.4.4.3 Bis-one-amine之合成 34 3.4.4.4 活性聚合起始劑之插層反應 34 3.4.4.5 以改質蒙托土進行苯乙烯活性聚合 35 四、 結果與討論 36 4.1單官能基起始劑系統 36 4.1.1 Mono-Aze之合成 36 4.1.2 Mono-Peroxide之合成 39 4.1.3 Mono-TEMPO之合成 41 4.2雙官能基起始劑系統 43 4.2.1 Bis-Aze之合成 43 4.2.2 Bis-Peroxide之合成 45 4.2.3 Bis-TEMPO之合成 47 4.3 活性聚合動力學探討 49 4.3.1 Mono-Peroxide與Mono-TEMPO聚合比較 49 4.3.2 Mono-TEMPO與Bis-TEMPO聚合比較 51 4.3.2 Mono-TEMPO與Bis-TEMPO的動力學比較 53 4.4 新型界面活性劑之合成 55 4.4.1Bis-one-Peroxide之合成 55 4.4.2Bis-one-TEMPO之合成 56 4.4.3Bis-one-amine之合成 57 4.5新型界面活性劑之插層反應 58 4.6分子量大小對蒙脫土層間距之影響 60 五、 結論 67 六、參考文獻 68 表目錄 表1 化合物之命名與結構 26 表2 活性聚合起始劑濃度配方表 32 表3 以TEMPO/MMT進行活性聚合配方表 35 表4 不同時間下Mono-TEMPO聚合之聚苯乙烯之分子量 51 表5 不同時間下Mono-Peroxide聚合之聚苯乙烯之分子量 51 表6 不同時間下Bis-TEMPO聚合之聚苯乙烯之分子量 52 表7 以TEMPO/MMT活性聚合後之複合材料之分子量 62 表8 以TEMPO/MMT活性聚合後之複合材料之性質 66 圖目錄 圖1-1 ATRP反應機制圖 3 圖1-2 RAFT反應機制圖 4 圖1-3 SFRP反應機制圖 4 圖1-4活性聚合反應示意圖 6 圖1-5聚合物/層狀黏土奈米複合材料的分類 12 圖2-1利用TEMPO進行活性聚合示意圖 15 圖2-2活性聚合末端具反應官能基示意圖 16 圖3-1單官能基起始劑之合成流程圖 27 圖3-2雙官能基起始劑之合成流程圖 27 圖3-3 界面活性劑之合成流程圖 27 圖3-4實驗流程圖 28 圖3-5 以Mono-Peroxide聚合反應示意圖 32 圖3-5 以Mono-TEMPO聚合反應示意圖 33 圖3-6 以Bis-TEMPO聚合反應示意圖 33 圖3-7 Bis-one-amine-salt插層蒙脫土陽離子交換示意圖 34 圖3-8以TEMPO/MMT進行活性聚合示意圖 35 圖4-1 Mono-Aze反應中形成之副反應示意圖 37 圖4-2 Mono-Aze之FT-IR光譜圖 38 圖4-3 Mono-Aze之1H NMR光譜圖 38 圖4-4 Dimethyl ketene的副反應示意圖 39 圖4-5 Mono-Peroxide之FT-IR光譜圖 40 圖4-6 Mono-Peroxide之1H NMR光譜圖 40 圖4-7 Mono-Peroxide之MASS圖 41 圖4-8 Mono-TEMPO之FT-IR光譜圖 42 圖4-9 Mono-TEMPO之1H NMR光譜圖 42 圖4-10 Mono-TEMPO之MASS圖 43 圖4-11 Bis-Aze反應中形成之副反應示意圖 44 圖4-12 Bis-Aze之FT-IR光譜圖 44 圖4-13 Bis-Aze之1H NMR光譜圖 45 圖4-14 Bis-Peroxide之FT-IR光譜圖 46 圖4-15 Bis-Peroxide之1H NMR光譜圖 46 圖4-16 Bis-Peroxide之MASS圖 47 圖4-17 Bis-TEMPO之FT-IR光譜圖 48 圖4-18 Bis-TEMPO之1H NMR光譜圖 48 圖4-19 Bis-TEMPO之MASS圖 49 圖4-20不同時間下Mono-Peroxide聚合之聚苯乙烯GPC圖 50 圖4-21不同時間下Mono-TEMPO聚合之聚苯乙烯GPC圖 50 圖4-22不同時間下Bis-TEMPO聚合之聚苯乙烯GPC圖 52 圖4-23 Mono-TEMPO 聚合聚苯乙烯ln[M0]/[M]對時間作圖 53 圖4-24 Mono-TEMPO聚合聚苯乙烯Mn與PDI對轉化率作圖 54 圖4-25 Bis-TEMPO 聚合聚苯乙烯ln[M0]/[M]對時間作圖 54 圖4-26 Bis-TEMPO聚合聚苯乙烯Mn與PDI對轉化率作圖 55 圖4-27 Bis-one-Peroxide之1H NMR光譜圖 56 圖4-28 Bis-one-TEMPO之1H NMR光譜圖 57 圖4-29 Bis-one-amine之1H NMR光譜圖 58 圖4-30 TEMPO/MMT在空氣下之TGA圖 59 圖4-31TEMPO/MMT之X-ray繞射圖 59 圖4-32各種比例TEMPO/MMT活性聚合後XRD繞射圖譜 60 圖4-33複合材料M7之TEM圖 61 圖4-34複合材料M5之TEM圖 61 圖4-35複合材料M3之TEM圖 61 圖4-36複合材料M1之TEM圖 62 圖4-37聚苯乙烯/MMT複合材料薄膜成品 63 圖4-38以TEMPO/MMT活性聚合後之複合材料XRD圖 64 圖4-39以TEMPO/MMT活性聚合後之複合材料TGA圖 64 圖4-40以TEMPO/MMT活性聚合後之複合材料DSC圖 65 圖4-41以TEMPO/MMT活性聚合後之複合材料GPC圖 65zh_TW
dc.language.isoen_USzh_TW
dc.publisher化學工程學系所zh_TW
dc.relation.urihttp://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2908200615410300en_US
dc.subjectLiving polymerization, Azetidine-2,4-dioneen_US
dc.subject活性聚合zh_TW
dc.subjectTEMPOen_US
dc.subjectMMTen_US
dc.subjectNanocompositeen_US
dc.subjectpolystyreneen_US
dc.subject起始劑zh_TW
dc.subject聚苯乙烯zh_TW
dc.subject蒙脫土zh_TW
dc.subject奈米複材zh_TW
dc.title新型活性聚合起始劑之製備與其活性自由基聚合應用zh_TW
dc.titleSynthesis and Application of Novel Peroxide Ester Initators for Living Free Radical Polymerizationen_US
dc.typeThesis and Dissertationzh_TW
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeThesis and Dissertation-
item.cerifentitytypePublications-
item.fulltextno fulltext-
item.languageiso639-1en_US-
item.grantfulltextnone-
Appears in Collections:化學工程學系所
Show simple item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.