Please use this identifier to cite or link to this item:
標題: 發光二極體(LED)於螺旋藻培養的應用
Effects of using light emitting diodes on the cultivation of Spirulina platensis.
作者: 王智昱
Wang, Chih-Yu
關鍵字: Light-emitting diodes;發光二極體;Spirulina platensis;Photoautotrophic cultivation;Monod model;Light intensity threshold;Economic efficiency;螺旋藻;光自營培養;動力學模式;臨界光照強度;能源經濟效率。
出版社: 化學工程學系所
引用: 參考資料 1. UTEX Culture collection of Algae. University of Texas at Austin. (UAS), ATCC 29408, http : // 2. O. Ciferri, Spirulina: the edible microorganism. Microbiological Reviews, 1983. 47 551-578. 3. T.C. Peng, The effects of light intensity, temperatureand salinity on polysaccharide of Spirulina platensis. Department of Aquaculture, National Taiwan Ocean University. Master Thesis, 2005. 4. Q. Hu, Handbook of Microalgal Culture: Biotechnology and Applied Phycology. Industrial production of microalgal cell-mass and secondary products-major industrial species. Arthrospira (Spirulina) platensis., ed. A. Richmond. 2003, USA: Blackwell Science. 264-272. 5. J. Hudak, Handbook of photosynthesis. Photosynthetic apparatus, ed. M. Pessarakli. 1997, USA: Marcel Dekker Inc. 27-48. 6. A.N. Glazer, C. Chen, R.C. Williams, S.W. YehJ.H. Clark, Kinetics of energy flow in the phycobilisome core Science. 230, 1985 1051-1053. 7. Y. TomonouY. Amao, Effect of micellar species on photoinduced hydrogen production with chlorophyll-a from spirulina and colloidal platinum. International Journal of Hydrogen Energy, 2004. 29 159-162. 8. C.d.O. Rangel-Yagui, E.D.G. Danesi, J.C.M.d. CarvalhoS. Sato, Chlorophyll production from Spirulina platensis: cultivation with urea addition by fed-batch process. Bioresource Technology, 2004. 92 133-141. 9. K. Niyogi, O. BjorkmanA. Grossman, Chlamydomonas xanthophylls cycle mutants identified by video imaging of chlorophyll fluorescence quenching. Plant Cell 1997. 9 1369-1380. 10. C.H. Su, Systematic design for cultivation of oleaginous microalgae. 2006, Department of Chemical Engineering, National Tsing Hua University. Ph.D Thesis. 11. AnupamaP. Ravindra, Value-added food: Single cell protein. Biotechnology Advances, 2000. 18 459-479. 12. G.H. WikdorsM. Ohno, Impact of algal research in aquaculture. Journal of phycology, 2001. 37 968-974. 13. P. Deshnium, K. Paithoonrangsarid, S. Cheevadhanarak, D. Meesapyodsuk, M. TanticharoenS. Cheevadhanarak, Temperature independent and-dependent expression of desaturase genes in filamentous cyanobacterium Spirulina platensis strain C1(Arthrospira sp. PCC 9438). Microbiology Letters, 2000. 184 207-213. 14. L. GregersenS. Jorgensen, Supervision of fed-batch Fermentations Chemical Engineering Journal, 1999. 75 69-76. 15. A. Belay, Y. Ota, K. MiyakawaH. Shimamatsu, Current knowledge on potential health benefits of Spirulina. Journal of Applied Phycology, 1993. 5 235-241. 16. S. Ayehunie, A. Belay, T.W. BabaR.M. Ruprecht, Inhibition of HIV-1 replication by an aqueous extract of Spirulina platensis (Arthrospira platensis). Journal of Acquired Immune Deficiency Syndromes and Human Retrovirology., 1998. 18 7-12. 17. Y. Hayakawa, T. Hayashi, K. Hayashi, T. Hayash, T. Ozawa, K. NiiyaN. Sakuragawa, Heparin cofactor II-dependent antithrombin 45 activity of calcium spirulan. Blood Coagulation Fibrinolysis, 1996. 7 554-560. 18. T. Mishima, J. Murata, M. Toyoshima, H. Fujii, M. Nakajima, T. Hayashi, T. KatoI. Saiki, Inhibition of tumor invasion and metastasisby calcium spirulan (Ca-SP), a novel sulfated polysaccharide derived from a blue-green alga, Spirulina platensis. Clinical and Experimental Metastasis, 1998. 16 541-550. 19. L. Binaghi, A.D. Borghi, A. Lodi, A. ConvertiM.D. Borghi, Batch and fed-batch uptake of carbon dioxide by Spirulina platensis. Process Biochemistry, 2003. 38 1341-1346. 20. K. ChojnackaA. Noworyta, Evaluation of Spirulina sp. growth in photoautotrophic, heterotrophic and mixotrophic cultures. Enzyme and Microbial Technology, 2004. 34 461-465. 21. M. Borowitzka, Algae culture. Aquaculture: farming aquatic animals and plants, ed. J.S. LucasP.C. Southgate. 2003, UK: Blackwell Publishing Ltd, . 253-276. 22. H. QiangA. Richmond, Productivity and photosynthetic efficiency of Spirulina platensis as affected by light intensity, algal density and rate of mixing in a flat plate. Journal of Applied Phycology, 1996. 8 139-145. 23. H. Qiang, Y. ZarmiA. Richmond, Combined effects of light intensity, light-path and culture density on output rate of Spirulina platensis (Cyanobacteria). European Journal of Phycology, 1998. 33 165-171. 24. A. Kaplan, Photoinhibition in Spirulina platensis: response of photosynthesis and HCO3- uptake capability to CO2- depleted conditions. Journal of Experimental Botany, 1981. 32 669-677. 25. A. VonshakA. Richmond, Mass production of the blue-green alga Spirulina: An overview. Biomass 1988. 15 233-247. 26. A. Vonshak, L. Chanawongse, B. BunnagM. Tanticharoen, Light acclimation and photoinhibition in three Spirulina platensis (cyanobacteria) isolates. Journal of Applied Phycology, 1996. 8 35-40. 27. S. JensenG. Knutsen, Influence of light and temperature on photoinhibition of photosynthesis in Spirulina platensis. Journal of Applied Phycology, 1993. 5 495-504. 28. A. VonshakL. Tomaselli, Arthrospira (Spirulina) : systematics and ecophysiology. Ecology of Cyanobacteria. Kluwer Academic Publishing, ed. B.A. WhittonM. Potts. 2000, Netherlands. 505-522. 29. A. Richmond, Outdoor mass cultures of microalgae. Handbook of Algal Mass Culture CRC Press, ed. A. Richmond. 1986, USA: Boca Raton FL,. 285-330. 30. S. BelkinS. Boussiba, Resistance of Spirulina platensis toammonia at high pH values. Plant Cell Physiology 1991. 32 953-958. 31. C. Jiménez, B.R. CossíoF.X. Niell, Relationship between physicochemical variables and productivity in open ponds for the production of Spirulina: a predictive model of algal yield. Aquaculture, 2003. 221 331-345. 32. M. JavanmardianB.Ø. Palsson, High-density photoautotrophic algal cultures: design, construction, and operation of a novel photobioreactor system. Biotechnology and Bioengineering, 1991. 38 1182-1189. 33. D.M. Johansson, X. Wang, T. Johansson, O. Inganäs, G. Yu, G. SrdanovM.R. Andersson, Srnthesis of soluble Phenyl-substituted poly (p-phenylenevinylenes) with a low content structural defects. Journal of Macromolecules, 2002. 35 4999-5003. 34. X. Yang, Y. Hua, S. Yin, Z. Wang, Y. Hou, Z. Xu, X. Xu, J. PengW. Li, Anovel oligomer poly (phenylene vinylene) derivative con taining oxadiazole segment. Synthetic Metals, 2000. 112 455-457. 35. S. Yang, Z. Wang, X. Chen, X. Yang, Y. Hou, Z. Xu, L. WangX. Xu, Color-variable electroluminescence from poly (p=phenylene vinylene) derivatives. Journal of Displays, 2000. 21 65-68. 36. C.G. LeeB.Ø. Passon, High-density algal photobioreactors using light-emitting diodes. Biotechnology and bioengineering, 1994. 10 1161-1167. 37. H.C.P. Matthijs, H. Balke, Udo M. van Hes, B.M.A. Kroon, L.R. MurR.A. Binot, Application of light-emitting diodes in bioreactors: Flashing light effects and energy economy in algal culture (Chlorella pyrenoidosa). Biotechnology and Bioengineering, 1996. 50 98-107. 38. C. Zarrouk, Contribution a letude d''une cyanophycee. Influence de divers facteurs physiques. et chimiques sur la croissance et la photosynthese do Spirulina maxima. 1966, University of Paris, France. Ph.D Thesis. 39. J.A.V. Costa, L.M. CollaP.F.D. Filho, Improving Spirulina platensis biomass yield using a fed-batch process. Bioresource Technology, 2004. 92 237-241. 40. K. Chojnacka, A. ChojnackiH. Górecka, Treace element removal by Spirulina sp. from copper smelter and refinery effuents. Hydrometallurgy, 2004. 73 147-153. 41. D. Nelson, Improved chlorophyll extraction method. Science, 1960. 5 351-356. 42. A. Richmind, Handbook of microalgal culture biotechnology and applied phycology. Basic culturing techniques., ed. L. YKS. H. 2004, UK: Blackwell science Ltd. 44. 43. A. BennettL. Bogorad, Complementary chromatic adaptation in filamentous blue-green alga. The Journal of cell biology, 1973. 58 419-435. 44. J. Abalde, L. Betancourt, E. Torres, A. CidC. Barwell, Purification and characterization of phycocyanin from the marine cyanobacterium Synechococcus sp. IO9201. Plant Science, 1998. 136 109-120. 45. R. Sarada, M.G. PillaiG.A. Ravishankar, Phycocyanin from Spirulina sp: influence of processing of biomass on phycocyanin yild, analysis of efficacy of extraction methods and stability studies on phycocyanin. Process Biochemistry, 1999. 34 795-801. 46. J.K. Sloth, M.G. WiebeN.T. Eriksen, Accumulation of phycocyanin in heterotrophic and mixotrophic cultures of the acidophilic red alga Galdieria sulphuraria Enzyme and Microbial Technology, 2006. 38 168-175. 47. J. Monod, The growth of bacterial cultures. Annual Review of Microbiology, 1949. 3 371. 48. H. Tamiya, E. Hase, K. ShibataA. Mituya, Kinetics of growth of Chlorella with special reference to its dependence on quantity of available light and on temperature. Algal culture from laboratory to pilot plant, ed. J.S. Burlew. 1953, Washington, D.C.: Carnegie Institution of Washington. 204-232. 49. J.V. Oorschot, Conversion of light energy in algal cultures. Med van Lund Wang 1955. 55 225-277. 50. J. SteeleH. Prentice, Microbial kinetics and dynamics in chemical reactor theory, ed. L. LapidusN. Amundson. 1977, NJ: Englewood Cliffs. 51. T. Bannister, Quantitative description of steady state, nutrientsaturated algal growth, including adaptation. Limnol Oceanogr, 1979. 24 79-96. 52. S. Aiba, Growth kinetics of photosynthetic microorganisms. Advances in Biochemical Engineering, 1982. 23. 53. E. Grima, A mathematical model of microalgal growth in light limited chemostat cultures. Journal of Chemical Technology and Biotechnology, 1996. 45 59-69. 54. E. Grima, F. Camach, J. Perez, F. FernandezJ. Sevilla, Evaluation of photosynthetic efficiency in microalgal cultures using averaged irradiance. Enzyme and Microbial Technology., 1997. 21 357-381. 55. S. Hirata, J. Hata, M. TayaS. Tone, Evaluation of Spirulina platensis growth considering light intensity distribution in photoautotrophic batch culture. Journal of Chemical Engineering of Japan, 1997. 30 355-359. 56. E. Grima, F. Fernandez, F. CamachoY. Chisti, Photobioreactors: light regime, mass transfer and scaleup. Journal of Biotechnologh, 1999. 70 231-247. 57. C.Y. Wang, C.C. FuY.C. Liu, Effects of using light-emitting diodes on the cultivation of Spirulina platensis. Biochemical Engineering Journal, 2007, in press. 58. The Energy Information Administration (EIA). 2005. 59. A. Bartual, L. Lubian, J. GalvezF. Niell, Effect of irradiance on growth, photosynthesis, pigment content and nutrient consumption in dense cultures of Rhodomonas salina (Wislouch) (Cryptophyceae). Marine Sciences 2002. 28 381-392. 60. E.D.G. Danesi, C.O. Rangel-Yagui, J.C.M. CarvalhoS. Sato, Effect of reducing the light intensity on the growth and production of chlorophyll by Spirulina platensis. Biomass and Bioenergy 2004. 26 320-335. 61. E. Gantt, Phycobilisomes. Annual Review of Plant physiology and Plant Molecular Biology, 1981. 32 327-347. 62. Dainippon Ink and Chemicals, Lina blue A (Natural blue colorant of Spirulina origin) Technical information. Tokyo, Japan: Dainippon Ink and Chemicals. 1985. 63. J. Doroshow, G. LockerC. Myers, Enzymatic defensesof the mouse heart against reactive oxygen metabolites:alterations produced by doxorubicin. Journal of Clinical Investigation, 1980. 65 128-135. 64. N. IijimaH. Shimamatsu. Antitumor agent and method of treatment therewith,US Patent pending. in Dainippon Ink and Chemicalsassignee. 1982. 65. M. Naidu, K. Kumar, I. Mohan, C. SundaramS. Singh, Protective effect of Gingko biloba extract against doxorubicin-induced cardiotoxicity in mice. Journal of Experimental Biology, 2002. 40 894-900. 66. M. Abou-El-Hassan, M. Rabelink, W.v.d. Vijgh, A. BastR. Hoeben, A comparative study between catalase gene therapy and the cardioprotector monohydroxyethylrutoside (MonoHER) in protecting against doxorubicin-induced cardiotoxicity in vitro. British Journal of Cancer, 2003. 89 2140-2146. 67. M. Khan, J.C. Shobha, I.K. Mohan, M.U.R. Naidu, C. Sundaram, S. Singh, P. KuppusamyV.K. Kutala, Protective Effect of Spirulina against Doxorubicin-induced Cardiotoxicity. Phytotherapy Research, 2003. 19 1030-1037.
本研究利用各種不同顏色的發光二極體(Light-emitting diodes)做為光源,用以比較不同光照強度與發射波長的光源條件,對於螺旋藻(Spirulina platensis)進行光自營培養(Photoautotrophic)之影響。實驗結果顯示:(1) 在相同的光照強度下,比較不同波長的光源條件,紅光之光源條件對螺旋藻有最佳的比生長速率,其次分別為白光、黃光、綠光與藍光;(2) 在固定光源波長條件下,螺旋藻在較強的光照強度有較大的比生長速率,(3)而紅光光源在光照強度設定於3000 μmol m-2 s-1條件時,其比生長速率是0.40(d-1)。
為有效掌握螺旋藻的生長模式,以光與光強度做為基質與基質濃度的修正型Monod動力學模式,在研究中被提出來評估螺旋藻的比生長速率(Specific growth rate),用以探討不同波長光源條件下,螺旋藻行光自營培養必需達到的臨界光照強度(Light intensity threshold)。並比較不同光源條件與強度下,生產每單位重量螺旋藻的經濟能源使用效率,實驗結果說明紅光光源的能源經濟效率最高。

Various light-emitting diodes (LEDs) with different light wavelengths and illumination intensities were employed to explore the effects of light source on photoautotrophic cultivation of Spirulina platensis. From the experimental results, red LED exhibited the highest specific growth rate 0.40(d-1) under the condition of 3000 μmol m-2 s-1. Blue LED showed the least efficiency in the conversion of photon to biomass. Hence, a modified Monod model was proposed to fit the specific growth rates of S. platensis from different light sources. The light intensity threshold for minimum photoautotrophic growth was also determined. In comparing the economic efficiency of energy to biomass, the use of red LED gave the most effective performance for the photoautotrophic cultivation.
其他識別: U0005-0307200713584200
Appears in Collections:化學工程學系所

Show full item record

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.