Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3601
標題: 多層壁奈米碳管/幾丁聚醣複合薄膜作為生物感測器之探討
Biosensors based on multiwalled carbon nanotubes/chitosan composite films
作者: 陳筱芸
Chen, Siao-Yun
關鍵字: Biosensors;生物感測器;Multiwalled carbon nanotubes;Chitosan;多層壁奈米碳管;幾丁聚醣
出版社: 化學工程學系所
引用: J. Tkac, I. Vostiar, P. Gemeiner, E. Sturdik, Bioelectrochemistry, 56, 127, 2002. [2] T. Compton, Trends cell biol., 14, 5, 2004. [3] A.V. Lobanov, A.N. Reshetilov, A.M. Boronin, Dokl. Biol. Sci., 386, 482, 2002. [4] S. Iijima, Nature, 354, 56, 1991. [5] X. Yu, D. Chattopadhyay, I. Galeska, F. Papadimitrakopoulos, J.F. Rusling, Electrochem. Commun., 5, 408, 2003. [6] M.C. Shin, H. S. Kim, Biosens. Bioelectron., 11, 171, 1996. [7] C.C. Pang, M.H. Chen, T.Y. Lin, T.C. Chou, Sens. Actuator, B: Chem., 73, 221, 2001. [8] P.C. Pandey, S. Upadhyay, I. Tiwari, V.S. Tripathi, Anal. Biochem., 288, 39, 2001. [9] K.P. Troyer, R.M. Wightman, Anal. Chem., 74, 5370, 2002. [10] T. Nakaminami, S. Kuwabata, H. Yoneyama, Anal. Chem., 71, 1928, 1999. [11] J. Wang, M.P. Chatrathi, B. Tian, R. Polsky, Anal. Chem., 72, 2514, 2000. [12] P.B. Wimer, K. Pang, G.M. Rose, G.A. Gerhardt, Brain res., 558, 305, 1991. [13] Y.D. Zhao, W.D. Zhang, H. Chen, Q.M. Luo, Sens. Actuators, B: Chem., 103, 619, 2005. [14] S. Seraphin, D. Zhou, J. Jiao, J.C. Withers, R. Loutfy, Nature, 362, 503, 1993. [15] S.C. Tsanġ, Y.K. Chen, P.J.F. Harris, M.L.H. Green, Nature, 372, 159, 1994. [16] M.C. Bank, R.R. Moore, T.J. Davies, R.G. Compton, Chem. Commu., 1804, 2004. [17] R.R. Moore, C.E. Banks, R.G. Compton, Anal. Chem., 76, 2677, 2004. [18] C.A. Burtis, E.R. Ashwood, Tietz Textbook of Clinical Chemistry, Saunders, p. 1917, 1999. [19] L.B. Siegel, H.J. Dalton, J.H. Hertzog, R.A. Hopkins, R.L. Hannan, G. J. Hauser, Intensive Care Med., 22, 1418, 1996. [20] S.A. Deshpande, M.P. Ward Platt, Dis. Childhood, 76, F15, 1997. [21] J. Bakker, P. Gris, M. Coffernils, R.J. Kahn, J.L. Vincent, Am. J. Surg., 171, 221, 1996. [22] A. DeGasperi, E. Mazza, A. Corti, F. Zoppi, M. Prosperi, G. Fantini, A. Scaiola, G. Colella, O. Amici, P. Notaro, A. Rocchini, F. Ceresa, E. Roselli, M. C. Grugni, Int. J. Clin. Lab. Res., 27, 123, 1997. [23] G.A. Gaesser, D.C. Poole, Int. J. Sports Med., 9, 284, 1988. [24] G. Palleschi, M. Mascini, L. Bernardi, Med. Biol. Eng. Comput., 28, B25, 1990. [25] G. Volpe, D. Moscone, G. Palleschi, Sens. Actuator, B: Chem., 24, 138, 1995. [26] J.Y. Jeon, T. Martin, N. Ali, M.D. Leonida, G. Haas, 49th Annual Undergraduate Research Symposium, ACS New York, May 2001. [27] F. Palmisano, M. Quinto, R. Rizzi, P.G. Zambonin, Analyst, 126, 866, 2001. [28] F.K. Sartain, X. Yang, C.R. Lowe, Anal. Chem., 78, 5664, 2006. [29] P.L. Altma, D.S. Ditmer, Federation of American Societies for Experimental Biology, Bethesda, MD, 1971. [30] T. Yao, Y. Kobayashi, S. Musha, Anal. Chim. Acta, 138, 81, 1982. [31] J.M. Laval, C. Bourdillon, J. Moiroux, J. Am. Chem. Soc., 106, 4701, 1984. [32] J. Wang, Q. Chen, Anal. Chem., 66, 1007, 1994. [33] Q. Yang, P. Atanasov, E. Wilkins, Biosens. Bioelectron., 14, 203, 1999. [34] K. Wang, J.J. Xu, H.Y. Chen, Sens. Actuators, B: Chem., 114, 1052, 2006. [35] S. Sumana, R. Singhal, A.L. Sharma, B.D. Malthotra, C.S. Pundir, Sens. Actuators, B: Chem., 107, 768, 2005. [36] L. Campanella, M. Tomassetti, Biosens. Bioelectron., 8, 307, 1993. [37] M. Mascini, M. Iannello, G. Palleschi, Anal. Chim. Acta, 146, 135, 1983. [38] B. Eggins, Biosensors, New York, p 191, 1996. [39] N.B. Myant, The Biology of Cholesterol and Related Steroids; Willium Heinemann Medical Books: London, 1981. [40] R. Bittman, Cholesterol: Its function and Metabolism in Biology and Medicine; Plenum: New York, 1997. [41] S.M. Grundy, D.S. Goodman, B.M. Rifkind, I.J. Cleeman, Arch. Intern. Med., 149, 505, 1989. [42] D. Noble, Anal. Chem., 65, 1037, 1993. [43] Laboratory Standardization Panel of the National Cholesterol Education Program, Current status of blood cholesterol measurement in clinical laboratories in the United States: a report from the laboratory standardization panel of the national cholesterol education program, Clin. Chem., 34, 193, 1988. [44] B. Zak, Am. J. Clin. Pathol., 27, 583, 1957. [45] I. Karube, K. Hara, H. Matsuoka, S. Suzuki, Anal. Chim. Acta, 139, 127, 1982. [46] S. Singh, A. Chaubey, B.D. Malhotra, Anal. Chim. Acta, 502, 229, 2004. [47] J.C. Vidal, E. Garcýa, J.R. Castillo, Anal. Chim. Acta, 385, 213, 1999. [48] S. Brahim, D. Narinesingh, A. Guiseppi-Elie, Anal. Chim. Acta, 448, 27, 2001. [49] J.P. Li, T.Z. Peng, Chin. J. Anal. Chem., 31, 669, 2003. [50] H.Y. Wang, S.L. Mu, Sens. Actuators, B: Chem., 56, 22, 1999. [51] T. Nakaminami, S. Ito, S. Kuwabata, H. Yoneyama, Anal. Chem., 71, 1068, 1999. [52] K.V. Gobi, F. Mizutani, Sens. Actuators, B: Chem., 80, 272, 2001. [53] V. Shumyantseva, G. Deluca, T. Bulko, S. Carrara, C. Nicolini, S.A. Usanov, A. Archakov, Biosens. Bioelectron., 19, 971, 2004. [54] http://www.jaist.ac.jp/~yokoyama/biosensor.html [55] S. Caras, J. Janata, Anal. Chem., 52, 1935, 1980. [56] D.G. Pijanowska, W. Torbicz, Sens. Actuators B: Chem., 44, 470, 1997. [57] X.L. Luo, J.J. Xu, W. Zhao, H.Y. Chen, Sens. Actuators B: Chem., 97, 249, 2004. [58] S. Reher, Y. Lepka, G. Schwedt, Microchim. Acta., 140, 15, 2002. [59] H.C. Cheng, M. Abo, A. Okubo, Analyst, 128, 724, 2003. [60] K. Yokoyama, S. Koide, Y. Kayanuma, Anal. Bioanal. Chem., 372, 248, 2002. [61] R. Kataky, E. Morgan, Biosens. Bioelectron. , 18, 1407, 2003. [62] M. Murata, C. Gouda, K. Yano, Anal. Sci., 19, 1355, 2003. [63] M. Nagel, F. Richter, B. Haring, Phys. Med. Biol., 48, 3625, 2003. [64] J. Wang, Analytica Chimica Acta, 469, 63, 2002. [65] http://juang.bst.ntu.edu.tw/BCbasics/Enzyme34.htm [66] http://orion1.paisley.ac.uk/Kinetics/Chapter_2/chapter2_4.html [67] S. Gamati, J.H.T. Luong, A. Mulchandani, Biosens. Bioelectron., 6, 125, 1991. [68] T.P. Jones, M.D. Porter, Anal. Chem., 60, 404, 1988. [69] Z. Zhujun, W.R. Seitz, Anal. Chem., 58, 220, 1986. [70] F.T. Richard, S.S. Jerome, Handbook of Chemical and Biological Sensors, p5. [71] J.C. Vidal, E. Garcia, J.R. Castillo, Sensors and Actuators B: Chem., 57, 219, 1999. [72] U. Mirtha, W. Jess, Anal. Chem., 58,2979,1986. [73] L. Doretti, D. Ferrara, P. Gattolin, S. Lora, Talanta, 44, 859, 1997. [74] G.T. Constantinos, B.F. Ageliki, N.T. Pantelis, Electro. Commu., 7, 781, 2005. [75] D. Lucio, F. Daniela, G. Paola, L. Silvano, Talanta, 44, 859, 1997. [76] J. Parellada, A. Narvaez, Biosens. Bioelectron., 12, 267, 1997. [77] J. Li, L.S. Chia, N.K. Goh, S.N. Tan, J. Electroanal. Chem., 460, 234, 1999. [78] J.M. S. Cabral, J.F. Kennedy, R.F. Taylor(New York; Dekker), 73, 1991. [79] E. Tamiya, Y. Siura, A. AkiyamA, Ann. NY Acad. Sci, 613, 396, 1990. [80] M. Gerard, K.Ramanathan, A. Chaubey, B.D. Malhotra, Electroanalysis, 11, 450, 1999. [81] A. Chaubey, M. Gerard, R. Singhal, V.S. Singh, B.D. Malhotra, Electrochim. Acta, 46, 723, 2000. [82] S. Brahim, D. Narinesingh, A. Guiseppi-Elie, Electroanalysis, 14, 627, 2002. [83] T. Yao, K. Takashima, Biosens. Bioelectron., 13, 67, 1998. [84] A. Kumar, R. Malhotra, B.D. Malhotra, S.K. Grover, Anal. Chim. Acta, 414, 43, 2000. [85] A. Kumar, Rajesh, A. Chaubey, S.K. Grover, B.D. Malhotra, J. Appl. Polym. Sci., 82, 3486, 2001. [86] M.K. Ram, P. Bertoncello, H. Ding, S. Paddeu, C. Nicolini, Biosens. Bioelectron., 16, 849, 2001. [87] J.C. Vidal, E. Garcia-Ruiz, J. Espuelas, T. Aramendia, J.R. Castillo, Anal. Bioanal. Chem., 377, 273, 2003. [88] E. Garcia-Ruiz, J.C. Vidal, M.T. Aramendia, J.R. Castillo, Electroanalysis, 16, 497, 2004. [89] J.C. Vidal, J. Espuelas, E. Garcia-Ruiz, J.R. Castillo, Talanta, 64, 655, 2004. [90] N.K. Chaki, K. Vijayamohanan, Biosens. Bioelectron., 17, 1, 2002. [91] S. Iijima, Nature, 354, 56, 1991. [92] S. Iijima, MRS Bullentin., 11, 43, 1994. [93] R. Saito, G. Dresselhaus, M.S. Dresselhaus, Physical Properties of Carbon Nanotube, 1998. [94] M.M. J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature, 381, 678, 1996. [95] E.W. Wong, P.E. Sheehan, C.M. Lieber, Science, 277, 1971, 1997. [96] N. Hamada, S. Sawada, A. Oshiyama, Phys. Rev. Lett., 68, 1579, 1992. [97] R. Saito, M. Fujita, G. Dresselhaus, M.S. Dresslhaus, Appl. Rev. Lett., 60, 2204, 1992. [98] T.W. Ebbesen, H.J. Lezec, H. Hiura, J.W. Bennett, H.F. Ghaemi, T. Thio, Nature, 382, 54, 1996. [99] J.E. Fischer, Acc. Chem. Res., 35, 1079, 2002. [100] Y.H. Huang, M. Okada, K. Tanaka, Phys. Rev. B, 53, 5129, 1996. [101] M. Terrones, W.K. Hsu, H.W. Kroto, D.R.M. Walton, Topics in Current Chemistry, 1991, 1, 1998. [102] J. Hone, M. Whitney, C. Piskoti, A. Zettl, Phys. Rev. B, 59, 2514, 1999. [103] P. Liang,Y. Liu,L. Guo, J. Anal. At. Spectrom.,19, 1489, 2004. [104] J. Muñoz,M. Gallego,M. Valcárcel, Anal. Chem.,77, 5389, 2005. [105] Y.Q. Cai,G.B. Jiang,J.F. Liu, Anal. Chem.,75, 2517, 2003. [106] Y.Q. Cai, G.B. Jiang,J.F. Liu,Anal. Chim. Acta,494, 149, 2003. [107] C. Saridara,R. Brukh,Z. Ipbal, Anal. Chem.,77, 1183, 2005. [108] J. Kong, N.R. Franklin, C. Zhou, M.G. Chapline, S. Peng, K. Cho, H. Dai, Science,287, 622, 2000. [109] S. Peng,K. Cho, Nanl. Lett.,3, 513, 2003. [110] L.B. Silva,S.B. Fagan,R. Mota R., Nano. Lett.,4, 65, 2004. [111] C. Liu, Y.Y. Fan, M. Liu, M.S. Dresselhaus, H.T. Cong, Science, 286, 1127, 1999. [112] R. Zacharia,K.Y. Kim, Phy. Lett.,412, 369, 2005. [113] http://ojps.aip.org/journals/doc/APPLAB-ft/vol_75/iss_20/3129_1.html [114] M.A. Poggi,L.A. Bottomley,P.T. Lillehei, Anal. Chem.,74, 2851, 2002. [115] M. Musameh, J. Wang, A. Merkoci, Y. Lin, Electrochem. Commun., 4 , 743, 2002. [116] J. Wang, M. Musameh, Anal. Chem., 75 , 2075, 2003. [117] J. Chen, J. Bao, C. Cai, T. Lu, Anal. Chim. Acta, 516 , 29, 2004. [118] Y.C. Tsai, J.M. Chen, S.C. Li, F. Marken, Electrochem. Commun., 6, 917, 2004. [119] Y.C. Tsai, S.C. Li, S.W. Liao, Biosens. Bioelectron., 22, 495, 2006. [120] Y.C. Tsai, J.D. Huang, Electrochem. Commun., 8, 956, 2006. [121] H.W. Liaw, J.M. Chen, Y.C. Tsai, J. Nanosci. Nanotechnol., 6, 2396, 2006. [122] N. Zhu,Z. Chang,P. He,Y. Hang, Anal. Chim. Acta,545, 21, 2005. [123] B. Munge,G. Liu,G. Collins,J. Wang, Anal. Chem.,77, 4662, 2005. [124] H. Boo, R.A. Jeong, S. Park, K.S. Kim, K.H. An, Y.H. Lee, J.H. Han, H. C. Kim, T. D. Chung, Anal. Chem., 78, 617, 2006. [125] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bardley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F.R. Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Science, 280, 1253, 1998. [126] A. Kuznetsova, I. Popova, J.T. Yates, M.J. Bronikowski, C.B. Huffman, J. Liu, R.E. Smally, H.H. Hwu, J.G. Chen, J. Am. Chem. Soc., 123, 10699, 2001. [127] A. Kuznetsova, D.B. Mawhinney, V. Naumenko, J.T. Yates, J. Liu, R.E. Smalley, Chem. Phys. Lett., 321, 292, 2000. [128] E.T. Mickelson, I.W. Chiang, J.L. Zimmerman, P.J. Boul, J. Lozano, J. Liu, R.E. Smally, R.H. Hauge, J.L. Margrave, J. Phys. Chem. B, 103, 4318, 1999. [129] P.J. Boul, J. Liu, E.T. Mickelson, C.B. Huffman, L.M. Ericson, I.W. Chiang, K.A. Smith, D.T. Colbert, R.H. Hauge, J.L. Margrave, R.E. Smally, Chem. Phys. Lett., 310, 367, 1999. [130] M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Science, 297, 593, 2002. [131] J.H. Rouse, Langmuir, 21, 1055, 2005. [132] M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Chem. Phys. Lett., 342, 265, 2001. [133] J.E. Riggs, Z. Guo, D.L. Carroll, Y.P. Sun, J. Am. Chem. Soc., 122, 5879, 2000. [134] A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Angew. Chem. Int. Ed., 40, 1721, 2001. [135] A. Star, D.W. Steuerman, J.R. Heath, J.F. Stoddart, Angew. Chem. Int. Ed., 41, 2508, 2002. [136] S. Kidambi, J.H. Dai, J. Li, M.L. Bruening, J. Am. Chem. Soc., 126, 2658, 2004. [137] K. Mukhopadhyay, S. Phadtare, V.P. Viond, A. Kumar, M. Rao, R.V. Chaudhari, M. Sastry, Langmuir, 19, 3858, 1992. [138] N. Dyn, D.D. Lev, J.A. Gregory, ACM Tran saction s on Graphics, 9, 160, 1990. [139] J. Wang, G.D. Liu, M.R. Jan, Q. Zhu, Electrochem. Commun., 5, 1000, 2003. [140] T.S. Ahmadi, Z.L. Wang, T.C. Green, A. Henglein, M.A. El-Sayed, Science, 272, 1924, 1996. [141] J.M. Petroski, T.C. Green, M.A. El-Sayed, J. Phys. Chem. A, 105, 5542, 2001. [142] B.G. Ershov, Russian Chemical Bulletin International Edition, 50, 626, 2001. [143] F. Bonet, V. Delmas, S. Grugeon, R.H. Urbina, P.Y. Silvert, K. Tekaia-Elhsissen, Nanostructured Materials, 11, 1277, 1999. [144] F.L. Yuan, G. Sasikumar, H. Ryu, J. New Mat. Electrochem. Syst., 7, 311, 2004. [145] M. Yang, Y. Yang, H. Yang, G. Shen, R. Yu, Biomaterials, 27, 246, 2006. [146] R.J. Lawrence, L.D. Wood, U.S. Pat., 4272353, 1981. [147] W.Z. Li, C.H. Liang, W.J. Zhou, J. Phys. Chem. B, 107, 6292, 2003. [148] J.E. Huang, D.J. Guo, Y.G. Yao, J. Electroanal. Chem., 577, 93, 2005. [149] Shukla A K, Ravikumar M K, M. Neergat, J. Appl. Electrochem., 29, 129, 1999. [150] Z.L. Liu, L.M. Gan, L. Hong, J. Power Sources, 139, 73, 2005. [151] R.Q. Yu, L.W. Chen, Q.P. Liu, Chem. Mat., 10, 718, 1998. [152] B. Xue, P. Chen, Q. Hong, J. Mater. Chem., 11, 2378, 2001. [153] L.C. Jiang, D. Pletcher, J. Electroanal. Chem., 149, 237, 1983. [154] K. Shimazu, D. Weisshaar, T. Kuwana, J. Electroanal. Chem., 223, 223, 1987. [155] K. Itaya, H. Takahashi, I. Uchida, J. Electroanal. Chem., 208, 373, 1986. [156] F. Gloaguen, J.-M. Léger, C. Lamy, J. Appl. Electrochem., 27, 1052, 1997. [157] M.W. Verbrugge, J. Electrochem. Soc., 141, 46, 1994. [158] E.J. Taylor, E.B. Anderson, N.R.K. Vilambi, J. Electrochem. Soc., 139, L45, 1992. [159] M.P. Hogarth, J. Munk, A.K. Shukla, A. Hamnett, J. Appl. Electrochem., 24, 85, 1994. [160] K.H. Choi, H.S. Kim, T.H. Lee, J. Power Sources, 75, 230, 1998. [161] R. Liu, W.-H. Her, P.S. Fedkiw, J. Electrochem. Soc., 139, 15, 1992. [162] P. Millet, M. Pineri, R. Durand, J. Appl. Electrochem., 19, 162, 1989. [163] Y.C. Xing, J. Phys. Chem. B, 108, 19255, 2004. [164] S.G. Sun, J. Lipkowski, Z. Altounian, J. Electrochem. Soc., 137, 2443, 1990. [165] S.M. Golabi, A. Nozad, J. Electroanal. Chem., 521, 161, 2002. [166] A.A. Mikhaylova, O.A. Khazova, V.S. Bagotzky, J. Electroanal. Chem., 480, 225, 2000. [167] C.W. Chen, T. Takezako, K. Yamamoto, T. Serizawa, M. Akashi, Colloids and Surfaces A, 169, 107, 2000. [168] W.Y. Yu, H.F. Liu, M. Liu, Z. Liu, J. Reactive & Functional Polymers, 44, 21, 2000. [169] The homepage of Fraunhofer IGB: http://www.igb.fraunhofer.de/WWW/GF/Biokatalyse/dt/GFBK_221_B1_Chitosan.dt.html [170] P.R. Klokkevold, H. Fulayama, E.C. Sung, Br. J. Oral Maxillofac. Surg., 57, 49, 1999. [171] 石玲,胡利平, 孔繁智等,中國海洋藥物, 19, 289, 2000. [172] S. Tajima, M. Hashiba, T. Suzuki, H. Akanuma, M. Yabuuchi, Biomedical chromatography : BMC, 7, 41, 1993. [173] L.D. Chim.,U.L. Sapienza, Inquinamento, 37, 39, 1995. [174] L.T. NG, J.T. Guthrie, Y.J. Yuan, H. Zhao, J. Appl. Polym. Sci., 79, 466, 2001. [175] M. Zhang, A. Smith, W. Gorski, Anal. Chem., 76, 5045, 2004. [176] A.J. Bard, I.R. Faulkner, Electrochemical Methods: Fundaments and Applications, Wily, New York, 2000. [177] D.R. Crow, Principle and Applications of Electrochemistry,高立,1998. [178] F.M. Veronese, C. Mammucari, F. Schiavon, O. Schiavon, S. Lora, F. Secundo, A. Chilin, A. Guiotto, Il Farmaco, 56, 541, 2001. [179] 胡啟章,電化學原理與方法,五南圖書,2002。 [180] G. Binning, C.F. Quate, C.H. Gerber, Phys. Rev. Lett., 56, 930, 1986. [181] M. Musameh, J. Wang, A. Merkoci, Y. Lin, Electrochem. Commun., 4, 743, 2002. [182] K.S. Booksh, B.R. Kowalski, Anal. Chem., 782A, 66, 1994. [183] P.N. Bartlett, E. Simon, C.S. Toh, Bioelectrochemistry, 56, 117, 2002. [184] J. Moiroux, P.J. Elving, J. Am. Chem., 102, 6533, 1980. [185] J.K. Park, H.J. Yee, K.S. Lee, W.Y. Lee, M.C. Shin, T. H. Kim, S.R. Kim, Anal. Chim. Acta, 390, 83, 1999. [186] M. Vreeke, R. Maidan, A. Heller, Anal. Chem., 64, 3004, 1992. [187] M. Elmegren, S.E. Lindquist, M. Sharp, J. Electroanal. Chem., 362, 227, 1993. [188] Y.C. Tsai, S.C. Li, J.M. Chen, Langmuir, 21, 3653, 2005. [189] A. Chaubey, K.K. Pande, V.S. Singh, B.D. Malhotra, Anal. Chim. Acta, 407, 97, 2000. [190] H.C. Yoon, H.S. Kim, Anal. Chim. Acta, 336, 57, 1996. [191] C.I. Li, Y.H. Lin, C.L. Shih, J.P. Tsaur, L.K. Chau, Biosens. Bioelectron., 17, 323, 2002. [192] X. Tan, M. Li, P. Cai, L. Luo, X. Zou, Anal. Biochem., 337, 111, 2005. [193] J. Li, T. Peng, Y. Peng, Electroanalysis, 15, 1031, 2003. [194] H. Wang, S. Mu, Sens. Actuator, B: Chem., 56, 22, 1999. [195] J.C. Vidal, E. Garcia-Ruiz, J.R. Castillo, J. Pharm. Biomedical Anal., 24, 51, 2000. [196] J. Shen, C.C. Liu, Sens. Actuator, B: Chem., 120, 417, 2007. [197] P.U. Abel, T.V. Woedtke, B. Schulz, T. Bergann, A. Schwock, J. Mol. Catal. B-Enzym., 7, 93, 1999. [198] J. Katrlík, A. Pizzariello, V. Mastihuba, J. Švorc, M. Stred’anský, S. Miertuš, Analytica Chimica Acta, 379, 193, 1999. [199] A.K. Basu, P. Chattopadhyay, U. Roychoudhuri, R. Chakraborty, Bioelectrochemistry, 70, 375, 2007.
摘要: 
本研究成功地以多層壁奈米碳管(MWNTs)/幾丁聚醣(Chitosan)為基質圈入乳酸去氫酶(lactate dehydrogenase, LDH)修飾於玻璃碳電極上作為電流式乳酸生物感測器。本研究使用原子力顯微鏡(atomic force microscope, AFM)來探討該MWNTs/Chitosan/LDH奈米生物複合薄膜之均勻度,實驗結果顯示LDH均勻的分散在MWNTs/Chitosan/LDH薄膜中。該複合薄膜中之MWNTs展現了其提高電流密度的能力,降低氧化還原型菸鹼醯胺腺嘌呤二核苷酸(β-nicotinamide adenine dinucleotide, reduced form, NADH)所需之電壓,並防止電極毒化,為了使該生物感測器之表現最佳化,我們探討了幾個實驗條件的最適值(如操作電壓、緩衝溶液之pH值、NAD+之濃度及酵素承載量)。本實驗最佳化後之乳酸生物感測器的靈敏度為0.0083 A/M.cm2,應答時間約3秒。該感測器在7天後仍能維持65 %的電流訊號。
在本研究的第二部份中,成功的製備出新穎膽固醇生物感測器。先以電沉積法將奈米鉑粒子導入MWNTs/Chitosan複合物中,以掃描式電子顯微鏡(scanning electron microscope, SEM)及穿透式電子顯微鏡(transmission electron microscopy, TEM)進行鑑定。實驗結果顯示加入鉑粒子後可催化過氧化氫(H2O2)之氧化,大幅提升了電流密度。進而對該薄膜之膽固醇氧化酵素(cholesterol oxidase, COx)承載進行探討。本實驗之最佳化膽固醇生物感測器之靈敏度為0.044 A/M.cm2,應答時間約8秒。實驗之相對標準偏差值(relative standard deviation, RSD)為3.47 %。該感測器7天後之電流訊號為35.8 %。

A composite of multiwalled carbon nanotubes/chitosan (MWNTs/Chitosan) was used as a matrix for entrapment of lactate dehydrogenase (LDH) onto a glassy carbon electrode in order to fabricate amperometric biosensor. The homogeneity of the resulting MWNTs/Chitosan/LDH nanobiocomposite film was investigated by atomic force microscopy (AFM). It shows that the enzyme is homogeneously immobilized within MWNTs/Chitosan/LDH. The inclusion of MWCNT within MWNTs/Chitosan/LDH exhibits the abilities to raise the current responses, to decrease the electrooxidation potential of β-nicotinamide adenine dinucleotide, reduced form (NADH), and to prevent the electrode surface fouling. The influence of several experimental parameters such as applied potential, solution pH value, NAD+ concentration, and enzyme loading was explored to optimize the electroanalytical performance of the biosensor. The optimized biosensor for the determination of lactate shows a sensitivity of 0.0083 A/M.cm2 and a response time of about 3 s. The proposed lactate biosensor retained 65 % of its original response after 7 days.
In the second part of the thesis, a novel cholesterol biosensor was fabricated. Platinum nanoparticle-doped MWNTs/Chitosan complex was prepared by electrodeposition of Pt(IV). The Pt nanoparticle-doped membrane was identified with scanning electron microscope (SEM) and transmission electron microscopy (TEM). The doped Pt nanoparticle demonstrates the abilities to electrocatalyze the oxidation of H2O2 and substantially raise the current density. The influence of enzyme loading was explored to optimize the electroanalytical performance of the biosensor. The optimized cholesterol biosensor shows a sensitivity of 0.044 A/M.cm2 and a response time of about 8 s. The relative standard deviation value is 3.47 % during the detection of cholesterol. The proposed cholesterol biosensor retained 36 % after 7 days.
URI: http://hdl.handle.net/11455/3601
其他識別: U0005-0307200722541600
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.