Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3604
標題: 以電化學沈積鉑和鉑釕金屬在多層壁奈米碳管-全氟磺酸聚合物薄膜上作為甲醇燃料電池陽極材料之探討
Electrochemical deposition of platinum and platinum-ruthenium nanoparticles in multiwalled carbon nanotube-Nafion composite for methanol electrooxidation
作者: 洪鈺惠
Hong, Yu-Huei
關鍵字: Methanol oxidation;甲醇燃料電池;Multiwalled carbon nanotubes;Platinum nanoparticles;Ruthenium nanoparticles;Nafion;多層壁奈米碳管;鉑;釕;全氟黃酸聚合物
出版社: 化學工程學系所
引用: [1] A.S. Aricò, S. Srinivasan, V. Antonucci, Fuel Cells, 1, 133, 2001. [2] K.Y. Chan, J. Ding, J. Ren, S. Cheng, K.Y. Tsang, J. Mater. Chem., 14, 505, 2004. [3] S. Katsuaki, U. Kohei, K. Hideaki, N. Yoshinobu, J. Electroanal. Chem., 256, 481, 1988. [4] M. Watanabe, S. Saegusa, P. Stonehart, J. Electroanal. Chem., 271, 213, 1989. [5] M.S. Loffler, B. Grob, H. Natter, R. Hempelmann, T. Krajewski, J. Divisek, Phys. Chem. Chem. Phys., 3, 333, 2001. [6] M. Gangeri, S. Perathoner, G. Centi, Inorg. Chim. Acta, 359, 4828, 2006. [7] F. Gloaguen, J.M. Leger, C. Lamy, J. Appl. Electrochem., 27, 1052, 1997. [8] G. Wu, Y.S. Chen, B.Q. Xu, Electrochem. Commun., 7, 1237, 2005. [9] Z.B. He, J.H. Chen, D.Y. Liu, H.H. Zhou, Y.F. Kuang, Diam. Relat. Mater., 13, 1764, 2004. [10] H.J. Wang, H. Yu, F. Peng , P. Lv, Electrochem. Commun., 8, 499, 2006. [11] Y.C. Xing, J. Phys. Chem. B, 108,19255, 2004. [12] Y. Lin, X. Cui, J. Phys. Chem. B, 109, 14410, 2005. [13] Y.L. Yao, Y. Ding, L.S. Ye, X.H. Xia, Carbon, 44, 61, 2006. [14] D.J. Guo, H.L. Li, J. electroanal. chem., 573, 197, 2004. [15] D.J. Guo, H.L. Li, J. Power Sources, 160, 44, 2006. [16] H. Tang, J.H. Chen, Z.P. Huang, D.Z. Wang, Z.F. Ren, L.H. Nie, Y.F. Kuang, S.Z. Yao, Carbon, 42, 191, 2004. [17] Z. He, J. Chen, D. Liu, H. Tang, W. Deng, Y. Kuang, Mater. chem. phys., 85, 396, 2004. [18] J. McBreen, S. Mukerjee, J. Electrochem. Soc., 142, 3399, 1995. [19] T. Frelink, W. Visscher, J.A.R. Van Veen, Surf. Sci., 335, 353, 1995. [20] 鄭雅堂,燃料電池發電技術,燃料電池論文集,1999。 [21] 楊志忠、林訟恩、韋文誠,燃料電池的發展現況,科學發展,367期,2003。 [22] 鄭耀宗、徐耀昇,燃料電池技術進展的現況分析,燃料電池論文集,1999。 [23] A. Hamnett, Catalyst Today, 38, 445,1997. [24] K. Sundmacher, T. Schultz, S. Zhou, K. Scott, M.Ginkel, E.D. Gilles, Chemical Engineering Science, 56, 333, 2001. [25] O.A. Khazova, A.A. Mikhailova, A.M. Skundin, E.K. Tuseeva, A. Havranek, K. Wippermann, Fuel Cells, 2, 99, 2002. [26] J. Ding, K.Y. Chana, J. Rena, F. Xiao, Electrochim. acta., 50, 3131, 2005. [27] C.E. Lee, S.H. Bergens, J. Phys. Chem. B, 102, 193, 1998. [28] E.S. Steigerwalt, G.A. Deluga, C.M. Lukehart, J. Phys. Chem. B, 106, 760, 2002. [29] D. Cao, S.H. Bergens, J. Power Sources, 134, 170, 2004. [30] A.L. Ocampoa, M. Miranda-Hernandez , J. Morgado, J.A. Montoya, P.J. Sebastian, J. Power Sources, 160, 915, 2006. [31] I.R. Moraes, Welliton J. Silva, S. Tronto, J.M. Rosolen, J. Power Sources, 160, 997, 2006. [32] Y. Saito, Y. Tani, N. Miyagawa, K. Mitsushima, A. Kasuya, Y. Nishina, Chem. Phys. Lett., 294, 593, 1998. [33] K.W. Park, D.S. Hanb, Y.E. Sungc, J. Power Sources, 163, 82, 2006. [34] D.J Guo, H.L L, Electrochem. Commun., 6, 999, 2004. [35] B. Pawelec, V.L. Parola, S. Thomasb, J.L.G. Fierro, J. Mol. Catal. A-Chem., 253, 30, 2006. [36] M. J. Gonzalez, C.H. Peters, M.S. Wrighton, J. Phys. Chem. B, 105, 470, 2001. [37] E. Casado-Rivera, D.J. Volpe, L. Alden, C. Lind, C. Downie, T. Vazquez-Alvarez, A.C.D. Angelo, F.J. DiSalvo, H.D. Abruna, J. Am. Chem. Soc., 126, 4043, 2004. [38] J. Luo, P.N. Njoki, Y. Lin, L. Wang, C.J. Zhong, Electrochem. Commun., 8, 581, 2006. [39] E. Ticianelli, J.G. Beery, M.T. Paffett, S. Gottesfeld, J. Electroanal. Chem., 258, 61, 1989. [40] Z. He, J. Chen, D. Liu, H. Zhou, Y. Kuang, Diam. Relat. Mat., 13, 1764, 2004. [41] 盧敏彥、張美元、廖怡萱、黃俊傑,直接甲醇燃料電池電極觸媒,工業材料雜誌,196 期,1993。 [42] H. Liu, C. Songa, L. Zhang, J. Zhang, H. Wang, D.P. Wilkinson, J. Power Sources, 155, 95, 2006. [43] J. Prabhuram, T.S. Zhao, Z.X. Liang, R. Chen, Electrochim. acta., 52, 2649, 2007. [44] Y. Lin, X. Cui, Langmuir, 21, 11474, 2005. [45] Y.L. Yao, Y. Ding, L.S. Ye, X.H. Xia, Carbon, 44, 61, 2006. [46] W. Li, C. Liang, W. Zhou, J. Qiu, Z. Zhou, G. Sun, Q. Xin, J. Phys. Chem. B, 107, 6292, 2003. [47] I.R. Moraes, Welliton J. Silva, S. Tronto, J.M. Rosolen, J. Power Sources, 160, 997, 2006. [48] Richard E. Smalley’s Group Home Page: http://smalley.rice.edu/index.cfm [49] H.W. Kroto, J.R. Heath, S.C. O’Brien, R.F. Curl, R.E. Smalley, Nature, 318, 162, 1985. [50] S. Iijima, Nature, 354, 56, 1991. [51] S. Iijima, T. Ichihashi, Nature, 363, 603, 1993. [52] D.S. Bethune, C.H. Kiang, M.S. Devries, G. Gorman, R. Savoy, J. Vazquez, Nature, 363, 605, 1993. [53] C.N.R. Rao, B.C. Satishkumar, A. Govindaraj, M. Nath, Chemphyschem, 2, 78, 2001. [54] M.S Dresselhaus, G. Dresselhaus, P.C. Eklund, Fullerenes and Carbon Nanotubes, Academic, San Diego, 1996. [55] J.W Ghe, T. Cagin, W.A. Goddard, Nanotechnology, 11, 65, 2000. [56] M. Terrones, W.K. Hsu, H.W. Kroto, D.R.M. Walton, Topics in Current Chemistry, 1991,1,1998. [57] G. Overney, W. Zhong, D.Z. Tomanek, Phy D., 27, 93, 1998. [58] B.I. Yakabson, C.J. Brabec, J. Bernholc, Phys. Rev. Lett., 76, 2511, 1996. [59] M.M.J. Treacy, T.W. Ebbesen, J.M. Gibson, Nature, 381,678,1996. [60] S. Iijima, C. Brabec, A. Maiti, J. Bernholc, J. Chem. Phys., 104, 2089, 1996. [61] A. Hirsch, Angew. Chem. Int. Ed., 41, 1853, 2002. [62] J. Liu, A.G. Rinzler, H. Dai, J.H. Hafner, R.K. Bardley, P.J. Boul, A. Lu, T. Iverson, K. Shelimov, C.B. Huffman, F.R. Macias, Y.S. Shon, T.R. Lee, D.T. Colbert, R.E. Smalley, Science, 280, 1253, 1998. [63] A. Kuznetsova, I. Popova, J.T. Yates, M.J. Bronikowski, C.B. Huffman, J. Liu, R.E. Smally, H.H. Hwu, J.G. Chen, J. Am. Chem. Soc., 123, 10699, 2001. [64] A. Kuznetsova, D.B. Mawhinney, V. Naumenko, J.T. Yates, J. Liu, R.E. Smalley, Chem. Phys. Lett., 321, 292, 2000. [65] E.T. Mickelson, I.W. Chiang, J.L. Zimmerman, P.J. Boul, J. Lozano, J. Liu, R.E. Smally, R.H. Hauge, J.L. Margrave, J. Phys. Chem. B, 103, 4318, 1999. [66] P.J. Boul, J. Liu, E.T. Mickelson, C.B. Huffman, L.M. Ericson, I.W. Chiang, K.A. Smith, D.T. Colbert, R.H. Hauge, J.L. Margrave, R.E. Smally, Chem. Phys. Lett., 310, 367, 1999. [67] M.J. O’Connell, S.M. Bachilo, C.B. Huffman, V.C. Moore, M.S. Strano, E.H. Haroz, K.L. Rialon, P.J. Boul, W.H. Noon, C. Kittrell, J. Ma, R.H. Hauge, R.B. Weisman, R.E. Smalley, Science, 297, 593, 2002. [68] Y.Y. Sun, K.B. Wu, S.S. Hu, Microchim. Acta, 142, 49, 2003. [69] J.H. Rouse, Langmuir, 21, 1055, 2005. [70] M.J. O’Connell, P. Boul, L.M. Ericson, C. Huffman, Y. Wang, E. Haroz, C. Kuper, J. Tour, K.D. Ausman, R.E. Smalley, Chem. Phys. Lett., 342, 265, 2001. [71] J.E. Riggs, Z. Guo, D.L. Carroll, Y.P. Sun, J. Am. Chem. Soc., 122, 5879, 2000. [72] A. Star, J.F. Stoddart, D. Steuerman, M. Diehl, A. Boukai, E.W. Wong, X. Yang, S.W. Chung, H. Choi, J.R. Heath, Angew. Chem. Int. Ed., 40, 1721, 2001. [73] A. Star, D.W. Steuerman, J.R. Heath, J.F. Stoddart, Angew. Chem. Int. Ed., 41, 2508, 2002. [74] Y.C. Tsai, S.C. Li, J.M. Chen, Langmuir, 21, 3653, 2005. [75] Y.C. Tsai, H.Y. Chien, J. Nanosci. Nanotech., 7, 1611, 2007. [76] B. Hoyer, T.M. Florence, G.E. Batley, Anal. Chem., 59, 1608, 1987. [77] S.D. Thompson, L.R. Jordan, M. Forsyth, Electrochim. Acta, 46, 1657, 2001. [78] J.H. Ye, P.S. Fedkiw, Electrochim. Acta, 41, 221, 1996. [79] T.Selvaraju, R. Ramaraj, J. Electroanal. Chem., 585, 290, 2005. [80] J. Wang, Analytical Electrochemistry, 3rd Edition, Wiley-VCH, New York, 2006. [81] C.M.A. Brett, A.M.O Brett, Electroanalysis, Oxford University Press, New York, 1998. [82] A.J. Bard, L.R. Faulkner, Electrochemical Methods: Fundamentals and Applications, Second Edition, Wiley, New York, 2001. [83] D.R. Crow, Principle and Applications of Electrochemistry,高立,1998。 [84] F.M. Veronese, C. Mammucari, F. Schiavon, O. Schiavon, S. Lora, F. Secundo, A. Chilin, A. Guiotto, Il Farmaco, 56, 541, 2001. [85] 胡啟章,電化學原理與方法,五南圖書,2002。 [86] M.A.B. Christopher, A.M.O. Brett, Electrochemistry Principles ,Methods, And Application, Oxford New York, 1993. [87] 微電子材料與製程: http://140.114.18.41/micro/ [88] N. Markovic, H. Gasteiger, P.N. Ross, J. Electrochem. Soc., 144, 1591, 1997. [89] G. Che, B.B. Lakshmi, E.R. Fisher, C.R. Martin, Nature, 393, 346, 1988. [90] J. Kua, W.A. Goddard, J. Am. Chem. Soc., 121,10928, 1999. [91] J. Prabhuram, T. S. Zhao, Z. K. Tang, R. Chen, Z. X. Liang, J. Phys. Chem. B, 110, 5245, 2006. [92] G. Che, B.B. Lakshmi, C.R. Martin, E.R. Fisher, Langmuir, 15, 750 , 1999. [93] D. Rolison, P.L. Hagans, K.E. Swider, J.W. Long, Langmuir, 15, 774, 1999. [94] E. Herrero, K. Franasazczuk, A. Wieckowski, J. Phys. Chem., 98, 5074, 1994. [95] Z. Liu, X.Y. Ling, X. Su, J.Y. Lee, J. Phys. Chem. B, 108, 8234, 2004.
摘要: 
本研究成功以電化學循環伏安法,還原沈積鉑(Pt)觸媒在MWCNT-Nafion薄膜上,且鉑(Pt)金屬顆粒傾向還原在多層壁奈米碳管上。還原沈積鉑(Pt)金屬後,Pt-MWCNT-Nafion陽極觸媒材料使用場發射式掃描式電子顯微鏡(Field emission-scanning electron microscope, FE-SEM) 、穿透式電子顯微鏡(Transmission electron microscope, TEM)兩種儀器來對於其微觀的表面形貌作鑑定,再使用X光能量散譜儀(X-ray energy dispersive spectrometer, EDS)作元素分析。Pt-MWCNT-Nafion陽極觸媒材料在0.5莫耳硫酸溶液的循環伏安掃描圖中,可以在看出約-0.2 V的地方有一氧化峰,為鉑(Pt)金屬所造成氫氣去吸附峰。在2莫耳的甲醇和1莫耳的硫酸混合溶液中,探討Pt-MWCNT-Nafion陽極觸媒材料被覆在玻璃碳電極(GC)上的甲醇氧化活性,並和Pt/GC、Pt-Nafion/GC兩電極作比較,得知其有較良好的甲醇電氧化活性。並探討Pt-MWCNT-Nafion陽極觸媒材料對甲醇氧化電活性的長時間穩定性。
第二部分多了釕的使用,並改變鉑釕(PtRu)前驅物的濃度比,還原沈積出不同原子比的鉑釕(PtRu)金屬在MWCNT-Nafion薄膜上。同樣使用場發射式掃描式電子顯微鏡(Field emission-scanning electron microscope, FE-SEM)、穿透式電子顯微鏡(Transmission electron microscope, TEM)兩種儀器來對於其微觀的表面形貌作鑑定,再使用X光能量散譜儀(X-ray energy dispersive spectrometer, EDS)作元素分析。不同組成比例的PtRu-MWCNT-Nafion陽極觸媒材料在0.5莫耳硫酸中探討其電化學特性和在2莫耳的甲醇和1莫耳的硫酸混合溶液中探討其對甲醇的氧化活性,結果顯示在原子比1:1的時候,有最佳的電化學特性和甲醇氧化活性。並探討PtRu-MWCNT-Nafion陽極觸媒材料對甲醇氧化電活性的短時間穩定性。最後,使用阻抗光譜分析法(EIS) 更進一步探討PtRu-MWCNT-Nafion陽極觸媒材料對甲醇氧化的電化學特性。

Platinum nanoparticles were successfully deposited within multiwalled carbon nanotube-Nafion (MWCNT-Nafion) matrix by a cyclic voltammetry method. A Pt(Ⅳ) complex was reduced to platinum nanoparticles on the surface of MWCNTs. The resulting Pt nanoparticles were characterized by scanning electron microscopy, transmission electron microscopy, and energy dispersive X-ray spectroscopy. Pt-MWCNT-Nafion nanocomposite film modified electrode had a sharp hydrogen desorption peak at about -0.2 V vs. Ag/AgCl (3M) in a solution of 0.5 M H2SO4, which are directly related to the electrochemical activity of the Pt nanoparticles presented on the surface of MWCNTs. The electrocatalytic properties of Pt-MWCNT-Nafion nanocomposite modified electrode for methanol electrooxidation was investigated by cyclic voltammetry in 2 M CH3OH + 1 M H2SO4 solution. In comparison with Pt-coated glassy carbon electrode and Pt-Nafion modified glassy carbon electrode, the Pt-MWCNT-Nafion modified electrode had excellent electrocatalytic activity toward the methanol oxidation. The long-term stability of the Pt-MWCNT-Nafion nanocomposite modified electrode had also been evaluated.
The concentration ratio of Pt(Ⅳ) and Ru(Ⅲ) complexes were changed and then deposited within multiwalled carbon nanotube-Nafion (MWCNT-Nafion) matrix by a cyclic voltammetry method. The resulting PtRu nanoparticles were characterized by SEM, TEM, and EDS. The different ratio of PtRu catalysts were investigate the electrochemical properties in a 0.5 M H2SO4 solution and the electrocatalytic properties for methanol oxidation in 2 M CH3OH + 1 M H2SO4 aqueous solutions by a cyclic voltammetry method. The results showed that the PtRu/MWNTs-Nafion/GC electrode had high electrocatalytic activity and methanol electrooxidation at atom ratio 1:1. The short-term stability of the PtRu-MWCNT-Nafion nanocomposite modified electrode had also been evaluated. Furthermore, electrochemical impedance spectroscopy (EIS) was also investigated the activity of these three electrodes during methanol oxidation in this system.
URI: http://hdl.handle.net/11455/3604
其他識別: U0005-0407200716542100
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.