Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3606
標題: 利用原子力微影術製備葡萄糖奈米生物感測器
Preparation of glucose nanobiosensor by atomic force microscope lithography
作者: 何政隆
Ho, Cheng-Lung
關鍵字: atom force microscope;原子力顯微鏡;mechanical lithography;electrodeposition;glucose biosensor;機械力微影;電化學沉積;葡萄糖感測器
出版社: 化學工程學系所
引用: [1] L.C. Jr Clark, C.Lyons, Ann. N.Y.Acad.Sci. 102, 29, 1962. [2] G. Binning, H. Rohrer, Ch. Gerber, E. Weibel, Phys. Rev. Lett. 49, 57, 1982. [3] G. Binning, C.F. Quate, Ch. Gerber, Phys. Rev. Lett. 56,930, 1986. [4] A. Noy, D.V. Vezenov, J.F. Kayyem, T.J. Meade, C.M. Lieber, Chem. Biol. 4, 519, 1997. [5] P.C.D. Hobbs, Y. Martin, C.C. Williams, H.K. Wickramasinghe, Proc. SPIE 897, 26, 1988. [6] C.B. Prater, Y.E. Strausser, Proc. 5th International Conference on Defect Recognition and Image Processing in Semiconductors and Devices 69, 1993. [7] C. Baur, A. Bugacov, B.E. Koel, A. Madhukar, N. Montoya, T.R. Ramachandran, A.A.G. Requicha, R. Resch, P.Will, Nanotechnology 9, 360, 1998. [8] P.H. Beton, A.W. Dunn, P. Moriarty, Appl. Phys. Lett. 67, 1075, 1995. [9] T.A. Jung, R.R. Schlittler, J.K. Gimzewski, H. Tang, C. Joachim, Science 271, 181, 1996. [10] J.A. Stroscio, D.M. Eigler, Science 254, 1319, 1991. [11] D.M. Eigler E.K. Schweizer, Nature 344, 524, 1990. [12] M.T. Cuberes, R.R. Schlitter, J.K. Gimzewski, Appl. Phys. Lett. 69, 3016, 1996. [13] I.W. Lyo, P. Avouris, Science 253, 173, 1991. [14] M.A. McCord, R.F. W. Pease, J. Phys. Colloq. 47, 485, 1986. [15] H.T. Soh, K.W. Guarini, C.F. Quate, “Scanning Probe Lithography”, Kluwer, Boston, 2001. [16] V. Bouchiat, D. Esteve, Appl. Phys. Lett. 69, 3098, 1996. [17] L.L. Sohn, R.L. Willett, Appl. Phys. Lett. 67, 1552, 1995. [18] R. Magno, B.R. Bennett, Appl. Phys. Lett. 70, 1855, 1997. [19] S. Hu, S. Altmeyer, A. Hamidi, B. Spangenberg, H. Kurz, J. Vac. Sci. Technol. B 16, 1983, 1998. [20] U. Kunze, B. Klehn, Adv. Mater. 11, 1473, 1999. [21] B. Klehn, U. Kunze, J. Appl. Phys. 85, 3897, 1999. [22] S. Hu, A. Hamidi, S. Altmeyer, T. Koster, B. Spangenberg, H. Kurz, J. Vac. Sci. Technol. B 16, 2822, 1998. [23] H.J. Mamin, Appl. Phys. Lett. 69, 433, 1996. [24] J.A. Dagata, J. Schneir, H.H. Harary, C.J. Evans, M.T. Postek, J. Bennett, Appl. Phys. Lett. 56, 2001, 1990. [25] N. Kramer, J. Jorritsma, H. Birk, C. Schőnenberger, J. Vac. Sci. Technol. B 13, 805, 1995. [26] S.C. Minne, P. Flueckiger, H.T. Soh, C.F. Quate, J. Vac. Sci.Technol. B 13, 1380, 1995. [27] L. Tsau, D. Wang, K.L. Wang, Appl. Phys. Lett. 64, 2133, 1994. [28] H. Sugimura, T. Uchida, N. Kitamura, H. Masuhara, Appl. Phys. Lett. 63, 1288, 1993. [29] T. Thundat, L.A. Nagahara, P.I. Oden, S.M. Lindsay, M.A. George, W.S. Glaunsinger, J. Vac. Sci. Technol. A 8, 3537, 1990. [30] H.J. Song, M.J. Rack, K. Abugharbieh, S.Y. Lee, V. Khan, D.K. Ferry, D.R. Allee, J. Vac. Sci. Technol. B 12, 3720, 1994. [31] E.S. Snow, D. Park, P.M. Campbell, Appl. Phys. Lett. 69, 269, 1996. [32] P. Avouris, T. Hertel, R. Martel, Appl. Phys. Lett. 71, 285, 1997. [33] P.A. Fontaine, E. Dubois, D. Stievenard, J. Appl. Phys. 84, 1776, 1998. [34] M.A. McCord, Ph.D. Thesis, Stanford University 1987. [35] A. Majumdar, P.I. Oden, J.P. Carrejo, L.A. Nagahara, J.J. Graham, J. Alexander, Appl. Phys. Lett. 61, 2293, 1992. [36] Masayoshi Ishibashi, Seiji Heike, Hiroshi Kajiyama, Yasuo Wada, and Tomihiro Hashizume, Appl. Phys. Lett. 72, 1581, 1998. [37] R.D. Piner, J. Zhu, F. Xu, S. Hong, C.A. Mirkin, Science 283, 661, 1999. [38] Y. Li, B.W. Maynor, J. Liu, J. Am. Chem. Soc. 123, 2105, 2001. [39] B.W. Maynor, S.F. Filocamo, M.W. Grinstaff, J. Liu, J. Am. Chem. Soc. 124, 522, 2002. [40] P. E. Sheehan, L. J. Whitman, William P. King, Brent A. Nelson, Appl. Phys. Lett. 85, 9, 2004. [41] M. Gerard, A. Chaubey, B.D. Malhotra, Biosens. Bioelectron. 17, 345, 2002. [42] S. Iijima, Nature 354, 56, 1991. [43] S.J. Updike, G.P. Hicks, Nature 214, 986, 1967. [44] 馮晉嘉,微小化生物感測器技術趨勢分析及發展政策建 議,工業技術研究院,台北,2002。 [45] Biochemistry Basic: http://juang.bst.ntu.edu.tw/BCbasics/Enzyme12.htm [46] Trevor Palmer, Understanding Enzyme, 4th edition, published by Prentice Hall/Ellis Horwood, 1995. [47] Geoffrey L. Zubay, Biochemistry, 4th edition,published by Wm. C. Brown, 1998. [48] S. Gamati, J.H.T. Luong, A. Mulchandani, Biosens. Bioelectron. 6, 125, 1991. [49] T.P. Jones, M.D. Porter, Anal. Chem. 60, 404, 1988. [50] J. Li, L.S. Chia, N.K. Goh, S.N. Tan, J. Electroanal. Chem., 460, 234, 1999. [51] J.C. Vidal, E. Garcia, J.R. Castillo, Sensors and Actuators B, 57, 219, 1999. [52] W.J. Sung, Y.H. Bae, Biosens. Bioelectron. 18, 1231, 2003. [53] S. Fabiano, C. Tran-Minh, B. Piro, L.A. Dang, M.C. Pham, O. Vittori, Mater. Sci. Eng. C 21, 61, 2002. [54] L. Doretti, D. Ferrara, P. Gattolin, S. Lora, Talanta, 44, 859, 1997. [55] G.T. Constantinos, B.F. Ageliki, N.T. Pantelis, Electro. Commun. 7, 781, 2005. [56] J. Parellada, A. Narvaez, Biosens. Bioelectron. 12, 267, 1997. [57] F.T. Richard, S.S. Jerome, Handbook of Chemical and Biological Sensors, p5. [58] J.C. Vidal, E. Garcia, J.R. Castillo, Sensors and Actuators B 57, 219, 1999. [59] P. Mulchandani, A. Mulchandani, I. Kaneva, W.Chen, Biosens. Bioelectron. 14, 77, 1999. [60] T. You, O. Niwa, M. Tomita, S. Hirono, Anal. Chem. 75, 2080, 2003. [61] Wang, J. ; Angnes, L., Anal.Chem.1992,64,456. [62] Norio Matsumoto, Xiaohong Chen, and George S. Wilson, Anal. Chem. 2002, 74, 362-367 [63] R. Hernandez, A.F. Diaz, R. Waltman, J. Bargon, J. Phy. Chem. 88, 3333, 1984. [64] A. F. Diaz, K. K. Kanazawa and G. P. Gardini, 1979, ’’Electrochemical Polymerization of Pyrrole’’,J. Chem. Soc, Chem. Comm,,pp. 635-636. [65] J.-C. Chiang, A.G. MacDiarmid, Synth. Met. 13, 193, 1986. [66] B. Wessling, Synth. Met., 1991, 45, 119 [67] 邱顯堂, 民 77.07.31, ’’聚吡咯複合導體膜的結構與性能 相關性之研究’’ , 國科會成果報告, 台灣工業技術學院. [68] A. F. Diaz, J. I. Castillo, J. A. Logan and W. Y. Lee, 1981, ’’Electrochemistry of Conducting Polypyrrole Films’’,J. Electroanal. Chem, Vol 129, p.115. [69] M. Gerard , A. Chaubey, B.D. Malhotra, Biosens. Bioelectron. 17, 345, 2002. [70] A.J. Heeger, In: Skotheim, T.A. (Ed.), Handbook of Conducting Polymers, vol. II. Marcel Dekker, New York, p. 729 and references therein, 1986. [71] A. Pron, Z. Kucharski, C. Budrowski, M. Zagorska, S. Krichene, J.Suwalski, G. Dehe, S. Lefeant, J. Chem. Phys. 83, 5923, 1989. [72] S.P. Armes, Synth. Met. 20, 365, 1987. [73] S. Machida, S. Miata, A. Techagumpuch, Synth. Met. 31, 311, 1989. [74] K.L. Tan, B.T.G. Tan, E.T. Kang, K.G. Neoh, Y.K. Ong, Phys. Rev.,B, Condens. Matter. 42, 7563, 1990. [75] J. Zhang, Y. She, B. Lu, Y. Zhou, K.F. Chin, J. Polym. Sci. 11, 334, 1993. [76] E.T. Kang, K.G. Neoh, Y.K. Ong, K.L. Tan, B.T.G. Tan, Macromolecules 24, 2822, 1991. [77] E.T. Kang, K.G. Neoh, T. Matsuyama, H. Yamaoka, Polym. Commun. 29, 201, 1988. [78] E.T. Kang, H.C. Ti, K.G. Neoh, T.C. Tan, Polym. J. 20, 399, 1988. [79] S. Rapi, V. Bocchi, G.P. Gardini, Synth. Met. 24, 217, 1988. [80] A.F. Diaz, K.K. Kanazawa, G.P. Gardini, J. Chem. Soc., Chem. Commun. 635, 1979. [81] S.N. Bladani, G. Parravano, Organic Electrochemistry (EdsMMBaizer, H Lund) (New York: Marcel Dekker, 1983) p. 995. [82] A.F. Diaz, K.K. Kanazawa, Extended Linear Chain Compounds (Ed. J S Miller) (New York: Plenum, 1983) p. 417. [83] R.A. Saraceno, J.G. Pack, A.G. Ewing, J. Electroanal. Chem.197, 265, 1986. [84] E.M. Genies, G. Bidan, A.F. Diaz, J. Electroanal. Chem. 149, 101, 1983. [85] 陳壽安,物理雙月刊,二十三卷,二期,2001。 [86] R.G. James, S. G. Brian, G. R. Sharp and M. A. Meador, 1990, ’’A review of Properties and Potential Aerospace Appilcations of Electrically Conducting Polymers’’, Sampe Quarterly, Vol 10,p.23. [87] 楊振毅, 民 85.06.13, ’’導電性高分子複合材料在乙醇氣 體感測之應用’’,台灣工業技術學院碩士論文. [88] 吳春桂, 民 84.10.20, ’’新型含導電高分子複合材料之合 成’’, 國科會成果報告, 中央大學化學研究. [89] M. Gerard , A. Chaubey, B.D. Malhotra, Biosens. Bioelectron. 17, 345, 2002. [90] T.V. Vernitskaky, O.N. Efimov, Russ. Chem. Rev. 66, 443,1997. [91] 黎世棊,奈米碳管/全氟磺酸聚合物/葡萄糖氧化酵素薄膜 和奈米碳管/聚吡咯/葡萄糖氧化酵素薄膜做為葡萄糖生物感測器之探討,中興大學化學工程學研究所碩士論文,2005。 [92] A.J. Bard, I.R. Faulkner, Electrochemical Methods: Fundaments and Applications, Wily, New York, 2000. [93] 胡啟章,電化學原理與方法,五南圖書出版公司,台北, 2002。 [94] 林俊羽, ’’使用原子力顯微鏡製造金屬奈米線與奈米電 極’’, 2004。 [95] H.J. Mamin, B.D. Terris, L.S. Fan, S. Hoen, R.C. Barrett, D. Rugar, IBM J. of Res. and Dev. 39, 681, 1995. [96] N. Sneddon, Int. J. Eng. Sci. 3, 47, 1965. [97] J.H. Hsu, C.Y. Lin, J. Vac. Sci. Technol. B 22, 2768,2004 [98] Johannes Schwarz, Heiner Kaden, Ute Enseleit, Electrochemistry Communications 2, 2000, 606–611. [99] A.A. Karyzkina, L. Gorton, G. Marko-Varga, Anal. Chem. 72 , 1720, 2000. [100] S. Eddy, K. Warriner, I. Christie, D. Ashworth, C. Purkiss, P. Vadgama, Biosens. Bioelectron. 10, 831, 1995. [101] K.S. Boosh, B.R. Kowalski, Anal. Chem. 66, 783A, 1994. [102] S.Asavapiriyant, G.K. Chandler, G.A. Gunawardena, D. Pletcher,J. Electroanal. Chem. 177, 229, 1984. [103] P. Vettiger, M. Despont, U. Drechsler, U. Durig, W. Haberle,M.I. Lutwyche, H. E. Rothuizen, R. Stutz, R. Widmer, and G. Binnig, IBM J. of Res. and Dev. 44, 323, 2000.
摘要: 
本研究成功的以原子力顯微鏡(atom force microscope, AFM)利用機械力微影(mechanical lithography)的方式在塗佈聚甲基丙烯酸甲酯(PMMA)薄膜的白金基板上製備出奈米孔道,而對於孔道的解析度影響最大的兩項因素分別為:探針的曲率半徑以及薄膜的厚度,在此製程中我們是選用曲率半徑小於10nm的探針,因為要製備出奈米孔道所以PMMA膜厚控制在30nm。接著以不同的施力刻劃PMMA薄膜,而選用2100nN做為最適值條件,做為後續製程的刮線施力,再經由原子力顯微鏡的量測奈米孔道的寬度與深度分別為80 nm和30 nm左右。為了將AFM機械力微影奈米孔道的技術應用於化學感測器與生物感測器的製備,我們以不同條數的白金奈米孔道電極在50mM Fe(CN)63-/4-還原物的0.1 M KCl溶液系統中於0.0 V與1.0 V掃描範圍以20 mV/s做來回的線性掃描,由循環伏安曲線發現白金奈米孔道越多電流值越大且形貌類似微電極形貌,接著去偵測H2O2
,由安培圖的電流訊號可證明當白金奈米孔道的條數越多時,電流訊號越高,所以在後續製程當中均選用25條的白金奈米孔道做為電極。
在葡萄糖測定中,分為二種酵素固定法去做探討,先利用電化學聚合導電高分子吡咯以循環伏安法將酵素固定在奈米孔道中,去偵測葡萄糖,但發現線寬不易控制,所以改用利用電沉積方法將酵素沉積在白金奈米孔道中,之後去偵測葡萄糖,發現其結果比用導電高分子吡咯圈入酵素固定法效果好,線寬的差異也不大,可經由原子力顯微鏡觀測出經酵素所沉積的線寬與高度分別為250 nm和90 nm。

A novel approach for the fabrication of Pt nanochannels by atomic force microscopy (AFM) mechanical lithography on PMMA thin film. The resolution of this mechanical lithography technique is affected by two factors, the probe tip size and the film thickness. We chose AFM tips with the radius of curvature <10 nm. Because the nanochannels can't be fabricated with a thick resist film, we control the thickness of PMMA film around 30 nm. We applied different engraving forces on the PMMA resist film. The minimum applied force can engrave a complete channel is 2100nN. In order to ensure a complete removal of the PMMA, all of the engraving force 2100nN was selected in our procedure. The wide and depth of nanochannels observed by AFM were about 80 nm and 30 nm, respectively. In order to apply this method to fabricate chemical sensor and biosensor. The cyclic voltammograms for different numbers of Pt nanochannels in 50mM Fe(CN)63-/4- and the potential was scanned between 0.0 and +1.0V at a scan rate of 20 mV/s. The cyclic voltammograms indicated that the response current increases with the increasing number of Pt nanochannels and the behavior was similar to perfect microelectrde. Then examine H2O2 by amperometry, the result shows that the response current increased with the increased number of Pt nanowires. We selected Pt 25-lines nanochannels for the glucose detection.
There were two kinds of immobile enzymes on 25-lines Pt nanochannels. Frist, we used electrochemical synthesis of polypyrrole and GOx performed by a cyclic voltammetry method. It was hard to control the width of polypyrrole nanowires with this method and the result was unapparent for the glucose detection. Secondly, We electrodeposited of glucose oxidase directly on the 25-lines Pt nanochannels. We got apparent current response when comparing with former method. The morphology of enzyme nanowires were investigated by AFM which around 250 nm in width and 90 nm in height.
URI: http://hdl.handle.net/11455/3606
其他識別: U0005-0407200717315600
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.