Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3608
標題: 循環式微波加熱輔助乙二醇合成奈米鈷粒子之研究
The Study on Synthesizing Cobalt Nano-particles by Recycle Microwave-Polyol Process
作者: 王彥霖
Wang, Yen-Lin
關鍵字: Recycle process;循環式;Microwave irradiation;Ethylene glycol reduction;Cobalt Nano-particles;微波;乙二醇還原法;奈米鈷粒子
出版社: 化學工程學系所
引用: 參考文獻 1 S. Komarneni, H. Katsuki, D. Li, A. S. Bhalla, “Microwave-polyol process for metal nanophases”, Journal of Physics: Condensed Matter, 16 , S1305, 2004 2 F. Bensebaa, F. Zavaliche, P. L’Ecuyer, R.W. Cochrane, T. Veres, “Microwave synthesis and characterization of Co-ferrite nanoparticles”, Journal of Colloid and Interface Science, 277, 104, 2004 3 鄭惠文, “奈米鈷磁性流體製備研究”, 國立中興大學化學工程研究所碩士論文, 2004 4 金重勳, “磁性技術手冊”, 中華民國磁性技術協會, 2000 5 N. Shukla, E. B. Svedberg , J. Ell , A.J. Roy, “Surfactant effects on the shapes of cobalt nanoparticles” , Materials Letters, 60, 1950, 2006 6 V. F. Puntes, K. M. Krishnan, A. P. Alivisatos, “Colloidal nanocrystal shape and size control--the case of cobalt”, Science, 291, 2115, 2001 7 張立德, “奈米材料”, 五南圖書出版, 2002 8 張立德, 牟季美, “奈米材料和奈米結構”, 滄海書局, 2002 9 羅吉宗, 戴明鳳, 林鴻明, 鄭振宗, 蘇程裕, 吳育民, “奈米科技導論”, 全華科技圖書股份有限公司, 2003 10 高逢時, “奈米科技”, 科學發展, 386期, 2005 11 戴道生, 錢昆明, “鐵磁學”,科學出版社, 2001 12 傳昭銘, 王昱豐, “奈米磁顆粒之放射性標化及應用簡介”, 物理雙月刊, 25卷3期, 2006 13 Y. Huh, M. L. H. Green, Y. H. Kim, J. Y. Lee, C. J. Lee, “Control of carbon nanotube growth using cobalt nanoparticles as catalyst”, Applied Surface Science, 249, 145, 2005 14 K. Raj, B. Moskowitz, R. Casciari, “Advances in ferrofluid technology”, Journal of Magnetism and Magnetic Materials, 149, 174, 1995 15 G. Carotenuto, G. P. Pepe, L. Nicolais, “Preparation and characterization of nano-size Ag/PVP composites for optical applications”, The European Physical Journal B, 16, 11, 2000 16 L. K. Kurihara, G. M. Chow, P. E. Schoen, “Nonocrystalline metallic powders and films produced by the polyol method”, Nanostructured Materials, 5, 607, 1995 17 D. Poondi, T. Dobbins, J. Singh, “A novel laser-liquid-solid interaction technique for synthesis of silver, nickel and immiscible silver-nickel alloys from liquid precursors”, Journal of Materials Science, 35, 6237, 2000 18 I. Pastoriza-Sanots, L. M. Liz-Marzán, “Formation of PVP-protected metal nanoparticles in DMF”, Langmuir, 18, 2888, 2002 19 H.M. Kingston and Lois B. Jassie,” Introduction to microwave sample preparation.” American Chemical Society, Washington, DC 1988 20 陳熹棣, “高週波基礎理論與應用”, 全華科技圖書股份有限公司, 1995 21 B. L. Cushing, V. L. Kolesnichenko, C. J. O’Connor, “Recent advances in the liquid-phase syntheses of inorganic nanoparticles”, Chemical Reviews, 104, 3893, 2004 22 W. Tu, H. Liu, “Continuous synthesis of colloidal metal nanoclusters by microwave irradiation”, Chemistry of Materials, 12, 564, 2000 23 H. Shao, Y. Huang, H. S. Lee, Y. J. Suh, C. O. Kim, “Effect of surfactants on the size and shape of cobalt nanoparticles synthesized by thermal decomposition”, Journal of Applied Physics, 99, 08N702, 2006 24 V. F. Puntes, K. Krishnan, A. P. Alivisatosa, “Synthesis of colloidal cobalt nanoparticles with controlled size and shapes”, Topics in Catalysis, 19, 145, 2002 25 V. F. Puntes, D. Zanchet, C. K. Erdonmez, A. P. Alivisatos, “Synthesis of hcp-Co nanodisks”, Journal of the American Chemical Society, 124, 12874, 2002 26 F. Dumestre, B. Chaudret, C. Amiens, M. C. Fromen, M. J. Casanove, P. Renaud, P. Zurcher, “Shape control of thermodynamically stable cobalt nanorods through organometallic chemistry”, Angewandte Chemie International Edition, 41, 4286, 2002 27 F. Dumestre, B. Chaudret, C. Amiens, M. Respaud, P. Fejes, P. Renaud, P. Zurcher, “Unprecedented crystalline super-lattices of monodisperse cobalt nanorods”, Angewandte. Chemie International Edition, 42, 5213, 2003 28 W. Liu, W. Zhong, X. L. Wu, N. J. Tang, Y. W. Dua, “Hydrothermal microemulsion synthesis of cobalt nanorods and self-assembly into square-shaped nanostructures”, Journal of Crystal Growth, 284, 446, 2005 29 Y. Xiong, Q. Chen, N. Tao, J. Ye, Y. Tang, J. Feng, X. Gu, “The formation of legume-like structures of Co nanoparticles through a polymer-assisted magnetic-field-induced assembly”, Nanotechnology, 18, 345301, 2007 30 T. F. Chang, S. Musikhin, L. Bakueva, L. Levina, M. A. Hines, P. W. Cyr, E. H. Sargent, “Efficient excitation transfer from polymer to nanocrystals”, Applied Physics Letters, 84, 4295 , 2004 31 Y. Hou, H. Kondoh, T. Ohta, S. Gao, “Size-controlled synthesis of nickel nanoparticles”, Applied Surface Science, 241, 218, 2005 32 D. Li, S. Komarneni, “Microwave-assisted polyol Process for synthesis of Ni nanoparticles”, Journal of American Ceramic Society, 89, 1510, 2006 33 Y. Bao, M. Beerman, A. B. Pakhomov, K. M. Krishnan, “Controlled crystalline structure and surface stability of cobalt nanocrystals”, Journal of Physical Chemistry. B, 109, 7220, 2005 34 S. S. Kim, S. T. Kim, J. M. Ahn, K. H. Kim, “Magnetic and microwave absorbing properties of Co-Fe thin films plated on hollow ceramic microspheres of low density”, Journal of Magnetism and Magnetic Materials, 271, 39, 2004 35 鄭振東, “實用磁性材料”, 全華科技圖書, 1999 36 P. W. Atkins, “Physical chemistry”, 6th ed., Oxford university press, 1998 37 張仕欣, 王崇人, “金屬奈米粒子的吸收光譜”, 化學, 56, 209, 1998 38 馬振基, “奈米材料科技原理與應用”, 全華科技圖書股份有限公司, 2003, 39 許樹恩, 吳泰柏, “X光繞射原理及材料結構分析”, 中國材料科學學會, 1996 40 楊鴻昌, “超導量子干涉磁量儀”, 科儀新知, 6期, 1991 41 A. B. R. Mayer, J. E. Mark, “Poly(2-hydroxyalkyl methacrylates) as stabilizers for colloidal noble metal nanoparticles”, Polymer, 41, 1627, 2000 42 C. Petit, M. P. Pileni, “Nanosize cobalt boride particles control of the size and properties”, Journal of Magnetism and Magnetic Materials, 166, 82, 1997 43 C. Luna, M.P. Morales, C.J. Serna, M. Vázquez, “Effects of surfactants on the particle morphology and self-organization of Co nanocrystals”, Materials Science and Engineering C, 23, 1129, 2003 44 F. K. Liu, P. W. Huang, Y. C. Chang, F. H. Ko, T. C. Chu, “Microwave assisted synthesis of silver nanorod”, Journal of Materials Research, 19, 469, 2004 45 H. Shao, Y. Huang, H. Lee, Y. J. Suh, C. O. Kim, “Cobalt nanoparticles synthesis from Co(CH3COO)2 by thermal decomposition”, Journal of Magnetism and Magnetic Materials, 304, e28, 2006 46 D. P. Dinega, M. G. Bawendi, “A solution-phase chemical approach to a new crystal structure of cobalt”, Angewandte Chemie International Edition, 38, 1788, 1999 47 H. T. Yang, C. M. Shen, Y. G. Wang, Y. K. Su, T. Z. Yang, H. J. Gao, “Stable cobalt nanoparticles passivaated with oleic acid and triphenylphosphine, Nanotechnology, 15, 70, 2004 48 G. A. Held, G. Grinstein, H. Doyle, S. Sun, C. B. Murray, “Competing interactions in dispersions of superparamagnetic nanoparticles”, Physical Review B, 64, 012408-1, 2001 49 Y. K. Su, C. M. Shen, T. Z. Yang, H. T. Yang, H. J. Gao, H. L. Li, “The dependence of Co nanoparticle sizes on the ratio of surfactants and the influence of different crystal sizes on magnetic properties”, Applied Physics A, 81, 569, 2005
摘要: 
奈米材料是指在三個維度之中至少有一維度在一百奈米以下,在結構上又可分為三種形式:顆粒狀、棒狀或線狀、層狀。在追求小尺寸、粒徑分佈均一的同時,如何去控制奈米粒子的形狀也成為另一個受重視的話題,不同形貌結構所呈現的特性亦不相同。本論文主要方向有二:(1)循環式微波加熱系統與裝置的建立;(2)探討保護劑對奈米鈷粒子大小、形貌的影響,包含單成份保護劑及雙成份保護劑混合。
本論文以醋酸鈷為金屬前驅物,氯化鈀做為成核劑,利用乙二醇做為還原劑並兼具溶劑,並加入polyvinyl pyrrolidone(PVP)、Dodecylamine (DDA)、Trioctylphosphine oxide (TOPO)做為粒子保護劑,以循環式微波加熱裝置進行反應。相較於批式製程,循環式可準確地控制溶液溫度在±2℃,可有效提昇粒徑分佈的均一性,另外,密閉式的管路空間可降低溶液過熱所造成的危險。
另外,從實驗結果顯示,個別加入PVP、TOPO、DDA為單成份保護劑,可有效控制粒子尺寸大小在3.1nm~24.9nm之間,形貌為顆粒狀。在雙成份保護劑系統方面,在一定比例下,混合PVP與DDA及TOPO與DDA,可以合成出奈米鈷纖維,長度約在50~120nm之間,寬度則在10~25nm之間,鈷纖維的長寬隨著保護劑的增加而減小;而混合PVP及TOPO則合成出形貌為顆粒狀的粒子。
綜合以上成果,本研究成功以循環式微波加熱裝置合成出奈米鈷粒子,並透過混合不同保護劑作用來到控制鈷粒子的形貌。

The definition of nano-materials is a characteristic length scale less than 100nm in one dimension at least. According to the structure, it can be divided into three types: particle-like, rod-like or wire-like, and layer-like. While focus on small size and narrow size distribution, how to control the shape of nano-particles is an important topic. The structures of different shape will display different properties. There are two subjects in this study: (1) set up the recycle microwave heating system and apparatus; and (2) discuss effect of the capping agent on particle size and shape, including the single and binary capping agent.
In this study, cobalt acetate is used as precursor and palladium chloride as nuclear agent, ethylene glycol is both employed as reduction agent and solvent, and polyvinyl pyrrolidone (PVP), dodecylamine (DDA), and trioctylphosphine oxide (TOPO) are used as capping agent by using recycle microwave heating apparatus. Comparing with batch process, recycle process can control temperature within ±2℃ precisely to improve the size distribution helpfully and reduce the danger of superheated solution in sealed pipe.
Additionally, as shown in the result, in single capping agent of PVP, TOPO and DDA, the particle size of cobalt can effective control within 3.1nm to 24.9nm, and the shape is particle-like. In the binary capping agent system, PVP and DDA, TOPO and DDA can synthesize cobalt nano-fiber in the suitable ratio, and the diameter is about 10nm to 25nm and the length is about 50nm to 120nm. The aspect ratio of the nano-fiber decreases with increasing the capping agent. The PVP and TOPO can only synthesize particle-like nano-particles of cobalt.
In summary, this research has successfully synthesized cobalt nano-particles by recycle microwave heating apparatus and control the shape of cobalt in binary capping agent system
URI: http://hdl.handle.net/11455/3608
其他識別: U0005-0502200814152400
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.