Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3611
標題: 超臨界流體輔助化學合成奈米銀材料之研究
The study on supercritical fluid-assisted synthesis of silver nanostructures
作者: 池郁雯
Chih, Yu-Wen
關鍵字: Supercritical fluids;多元醇;Polyol process;Silver nanostructures;Polyvinyl pyrrolidon;Carbon dioxide;奈米銀結構;聚乙烯吡咯烷酮;二氧化碳
出版社: 化學工程學系所
引用: [1] 尹邦躍, “奈米時代,” 五南圖書出版公司, 2002. [2] N. Ichinose, Y. Ozaki, and S. Kashu, “Superfine Particle Technology,” Springer-Verlag, 1992. [3] G. Schimid, “Clusters and Colloids : From Theory to Applications,” VCH, 1994. [4] 莊萬發, “超微粒子理論應用,” 復漢出版社, 1995. [5] 羅吉宗, 戴明鳳, 林鴻明, 鄭振宗, 蘇程裕, 吳育民, “奈米科技導論,” 全華科技圖書股份有限公司, 2003. [6] 蘇品書, “超微粒子材料技術,” 復漢出版社, 1989. [7] M. L. Steigerwald and L. E. Brus, Acc. Chem. Res., 23, 183, 1990. [8] Y. Wang and N. Herron, J. Phys. Chem., 95, 525, 1991. [9] J. Z. Zhang, Acc. Chem. Res., 30, 423, 1997. [10] J. H. Fendler, Chem. Rev., 87, 877, 1987. [11] Al. L. Efros and A. L. Efros, Sov. Phys. Semicond., 16, 772, 1982. [12] M. P. Bruchez, M. Moronne, P. Gin, S. Weiss, and A. P. Alivisatos, Science, 281, 2013, 1998. [13] C. F. Bohren and D. R. Huffman, “Absorption and Scattering of Light by Small Particles,” Wiley-Interscience, 1998. [14] A. Henglein, Chem. Rev., 89, 1861, 1989. [15] A. P. Alivisatos, Science, 271, 933, 1996. [16] N. Toshima and T. Yonezawa, New J. Chem., 1179, 1998. [17] F, Mafuné, J. Y. Kohno, Y. Takeda, T. Kondow, and H. Sawabe, J. Phys. Chem. B, 105, 5114, 2001. [18] R. W. Siegel, Ann. Rev. Mater. Sci., 21, 559, 1991. [19] R. Uyeda, Prog. Mater. Sci., 35, 1, 1991. [20] K. Santra, C. K. Sarkar, M. K. Mukherjee, and B. Ghosh, Thin Solid Films, 213, 226, 1992. [21] S. Raoux, D. Cheung, M. Fodor, W. N. Taylor, and K. Fairbairn, Plasma Sources Sci. Technol., 6, 405, 1997. [22] T. Mahalingam, J. S. P. Chitra, S. Rajendran, M. Jayachandran, and C. M. Juliana, J. Cryst. Growth., 216, 304, 2000. [23] R. A. Powell, “PVD for Microelectronics: Sputter Deposition Applied to Semiconductor Manufacturing,” Academic Press, 1998. [24] G. M. Chow and A. S. Edelstein, Nanostruct. Mater., 1, 107, 1992. [25] A. S. Edelstein and R. C. Cammarata, “Nanomaterials: Synthesis, Properties and Applications,” Bristol (Philadelphia : Institute of Physics Pub.), 1998. [26] R. Janot and D. Gu´erard, Prog. Mater. Sci., 50,1, 2005. [27] C. N. Chen, Y. L, Chen, and W. J. Tseng, J. Mater. Process. Technol., 190, 61, 2007. [28] J. H. Schulman and T. P. Hoar, Nature, 152, 102, 1943. [29] K. P. Bidyut and M. Satya, J. Dispersion Sci. Technol., 18, 301, 1997. [30] Frahataziz and M. A. J. Rodgers, “Radiation chemistry:principles and applications”, VCH, 1987. [31] M. Ji, X. Chen, C. M. Wai, and J. L. Fulton, J. Am. Chem. Soc., 121, 2631, 1999. [32] J. P. Cason, K. Khambaswadkar, and C. B. Roberts, Ind. Eng. Chem. Res., 39, 4749, 2000. [33] P. S. Shah, J. D. Holmes, R. C. Doty, K. P. Johnston, and B. A. Korgel, J. Am. Chem. Soc., 122, 4245, 2000. [34] H. Ohde, F. Hunt, and C. M. Wai, Chem. Mater., 13, 4130, 2001. [35] A. Kameo, T. Yoshimura, and K. Esumi, Colloids Surf. A: Physicochem. Eng. Aspects, 215, 181, 2003. [36] M. C. McLeod, R. S. McHenry, E. J. Beckman, and C. B. Roberts, J. Phys. Chem. B, 107, 2693, 2003. [37] M. C. McLeod, W. F. Gale, and C. B. Roberts, Langmuir, 20, 7078, 2004. [38] J. Liu, P. Raveendran, Z. Shervani, Y. Ikushima, Y. Hakuta, Chem. Eur. J., 11, 1854, 2005. [39] P. W. Bell, M. Anand, X. Fan, R. M. Enick, and C. B. Roberts, Langmuir, 21, 11608, 2005. [40] Y. P. Sun, P. Atorngitjawat, and M. J. Meziani, Langmuir, 17, 5707, 2001. [41] M. J. Meziani, P. Pathak, F. Beacham, L. F. Allard, and Y. P. Sun, J. Supercrit. Fluids, 34, 91, 2005. [42] Y. Xia and N. J. Halas, MRS Bulltin, 30, 338, 2005. [43] J. W. P. Schmelzer, “Nucleation Theory and Application,” Wiley-VCH, 2005. [44] 陳進成, 科學發展, 377, 26, 2004. [45] J. W. Mullin, “Crystallization,” Butterworth-Heinemann, 1993. [46] 賈紹義, 柴誠敬, “化工傳質與分離過程,” 化學工業出版社, 中國, 2001. [47] 王振中, 張利鋒, “化工原理,” 化學工業出版社, 中國, 2006. [48] C. B. Murray, C. R. Kagan, and M. G. Bawendi, Annu. Rev. Mater. Sci., 30, 545, 2000. [49] V. K. LarMer and R. H. Dinegar, J. Am. Chem. Soc., 72, 4847, 1950. [50] R. Boistelle and J. P. Astier, J. Cryst. Growth, 90, 14, 1988. [51] W. A. Tiller, “The Science of Crystallization: Macroscopic Phenomena and Defect Generation,” Cambridge University Press, 1992. [52] J.W. Mullin, “Crystallization,” Butterworth-Heinemann, 1993. [53] A. E. Nielsen, “Kinetics of Precipitation,” Pergamon Press, 1964. [54] 張仕欣及王崇人, 化學, 56, 209,1998. [55] G. Carotenuto, S. DeNicola, and L. Nicolais, J. Nanoparticle Res., 3, 469, 2001. [56] R. Salvati, A. Longo, G. Carotenuto, L. Nicolais, S. De Nicola, and G. P. Pepe, Eur. Phys. J. B, 41, 43, 2004. [57] M. L. Rodríguez-Sánchez, M. J. Rodríguez, M. C. Blanco, J. Rivas, and M. A. López-Quintela, J. Phys. Chem. B, 109, 1183, 2005. [58] P. Y. Silvert, H. U. Ronaldo, and T. E. Kamar, J. Mater. Chem., 7, 293, 1997. [59] C. Kan, W. Cai, C. Li, and L. Zhang, J. Mater. Res., 20, 320, 2005. [60] R. Patakfalvi, Z. Virányi, and I. Dékány, Colloid Polym. Sci., 283, 299, 2004. [61] Y. Gao, P. Jiang, L. Song, L. Liu, X. Yan, Z. Zhou, D. Liu, J. Wang, H. Yuan, Z. Zhang, X. Zhao, X. Dou, W. Zhou, G. Wang, and S. Xie, J. Phys. D: Appl. Phys., 38, 1061, 2005. [62] H. Hirai, Y. Nakao, and N. Toshima, J. Macromol. Sci.-Chem. A, 13, 727, 1979. [63] L. K. Kurihara, G. M. Chow, and P. E.Schoen, Nanostructured Mater., 5, 607, 1995. [64] C. Wang, M. Chen, G. Zhu, Z. Liu, J. Colloid Interface Sci., 243, 362, 2001. [65] Y. Sun and Y. Xia, Science, 298, 2176, 2002. [66] Y. Zhu, Y. Qian, M. Xhang, and Z. Chen, Mater. Lett., 17, 314, 1993. [67] Y. Zhu, Y. Qian, M. Zhang, Z. Chen, B. Lu, and G. Zhou, Mater. Sci. Eng. B, 23, 116, 1994. [68] 黃偉鎮, “紫外光輔助乙二醇合成奈米銀粒子之研究,” 國立中興大學碩士論文, 2006. [69] K. Mallick, M. J. Witcomb, and M. S. Scurrell, Appl. Phys. A, 80, 395, 2005. [70] 馬振基, “奈米材料科技原理與應用,” 全華科技圖書股份有限公司, 2003 [71] 方明發, “化妝品製造學,” 人光出版社, 1991. [72] 中國上海勝浦新材料有限公司(http://www.chinapvp.com) [73] Z. Zhang, B. Zhao, and L. Hu, J. Solid State Chem., 121, 105, 1996. [74] http://en.wikipedia.org/wiki/Image:Phase-diag.svg [75] P. G. Jessop and W. Leitner, “Chemical Synthesis Using Supercritical Fluids,” Wiley-VCH, 1999. [76] Y. Arai, T. Sako and Y. Takebayashi, “Supercritical Fluids: Molecular Interactions, Physical Properties, and New Applications,” Springer, 2002. [77] M. Saharay and S. Balasubramanian, ChemPhysChem, 5, 1442, 2004. [78] A O’Neil and J. J. Watkins, MRS Bulletin, 30, 967, 2005. [79] A. S. Geopalan, C. M. Wai, and H. K. Jacobs, “Supercritical Carbon Dioxide: Separations and Process,” ACS Symposium Series 860, American Chemical Society, 2003. [80] A. I. Cooper, Adv. Mater., 13, 1111, 2001. [81] Y. Wang, D. Wei, R. Dave, R. Pfeffer, M. Sauceau, J. J. Letourneau, and J. Fages, Powder Technol., 127 , 32, 2002. [82] R. R. Gupta, V. S. RamachandraRao, and J. J. Watkins, Macromolecules, 36, 1295, 2003. [83] H. Wakayama and Y. Fukushima, Ind. Eng. Chem. Res., 45, 3328, 2006. [84] M. Bahrami and A. Ranjbarian, J. Supercrit. Fluids, 40 , 263, 2007. [85] T. A. Hoefling, R. R. Beitle, R. M. Enick, and E. J. Beckman, Fluid Phase Equilibr., 83, 203, 1993. [86] M. J. Clarke, K. L. Harrison, K. P. Johnston, and S. M. Howdle, J. Am. Chem. Soc., 119, 6399, 1997. [87] M. M. Jiménez-Carmona and M. D. Luque de Castro, Anal. Chim. Acta., 358, 1, 1998. [88] B. H. Hutton, J. M. Perera, F. Grieser, and G. W. Stevens, Coll. Surf. A Physicochem. Eng. Aspects, 146, 227, 1999. [89] H. M. Woods, M. M. C. G. Silva, C. Nouvel, K. M. Shakesheff, and S. T. Howdle, J. Mater. Chem., 14, 1663, 2004. [90] K. A. Consani and R. D. Smith, J. Supercrit. Fluids, 3, 51, 1990. [91] M. L. O’Neill, Q. Cao, M. Fang, K. P. Johnston, S. P. Wilkinson, C. D. Smith, J. L. Kerschner, and S. H. Jureller, Ind. Eng. Chem. Res., 37, 3067, 1998. [92] E. G. Ghenciu, A. J. Russell, E. J. Beckman, L. Steele, and N. T. Becker, Biotechnol. Bioeng., 58, 572, 1998. [93] N. Chennamsetty, H. Bock, L. F. Scanu, F. R. Siperstein, and K. E. Gubbins, J. Chem. Phys., 122, 094710, 2005. [94] M. C. McLeod, C. L. Kitchens, and C. B. Roberts, Langmuir, 21, 2414, 2005. [95] V. M. Shah, B. J. Hardy, and S. A. Stern, J. Polym. Sci. B, 31, 313, 1993 [96] A. V. Yazdi and E. J. Beckman, J. Mater. Res., 10, 530, 1995. [97] K. A. Shaffer, T. A. Jones, D. A. Canelas, J. M. Desimone, and S. P. Wilkinson, Macromolecules, 29, 2704, 1996. [98] H. Hu, M. Chen, and R. Cheng, Polymer, 44, 341, 2003. [99] E. Loste, J. Fraile, M. A. Fanovich, G. F. Woerlee, and C. Domingo, Adv. Mater., 16, 739, 2004. [100] C. C. de la Tour, Ann. Chim. Phys., 21, 178, 1822. [101] J. B. Hannay and J. Hogarth, Proc. Roy. Soc., 29, 324, 1879. [102] J. B. Hannay, Proc. Roy. Soc., 30, 484, 1880. [103] N. C. Francis and K. M. Watson, Phys. Rev., 93, 313, 1954. [104] H. Berg, C. Turner, L. Dahlberg, and L. Mathiasson, J. Biochem. Bioph. Methods, 43, 391, 2000. [105] Hansen, B. N., A. H. Harvey, J. A. P. Coelho, A. M. F. Palavra, and T. J. Bruno, J. Chem. Eng. Data, 46, 1054, 2001. [106] J. M. Wong, N. Y. Kado, P. A., Kuzmicky, H. S. Ning, J. E. Woodrow, D. P. H. Hsien, and J. N. Seiber, Anal. Chem., 63, 644, 1991. [107] F. W. Jones, B. O. Bateup, D. R. Dixon, and S. R. Gray, J. Supercriti. Fluids, 10, 105, 1997. [108] S. B. Hawthome and D. J. Miller, Anal. Chem., 59, 1750, 1987. [109] J. J. Yu, Water Res., 36, 1095, 2002. [110] C. M. Wai, F. Hunt, M. Ji, and X. Chen, J. Chem. Educ., 75, 1641, 1998. [111] O. Kajimoto, Chem. Rev., 99, 355, 1999. [112] Z. K. Lopez-Castillo, R. Flores, I. Kani, J. P.. Fackler, and A. Akgerman, Ind. Eng. Chem. Res., 42, 3893, 2003. [113] D. Guha, H. Jin, M. P. Dudukovic, P. A. Ramachandran, and B. Subramaniam, Chem. Eng. Sci., 62, 4967, 2007. [114] J. F. Martins, I. B. de Carvalho, T. C. de Sampaio, and S. Barreiros, Enzyme. Microb. Technol., 16, 785, 1994 [115] T. Mori and Y. Okahata, Chem. Commun., 2215, 1998. [116] N. Harper and S. Barreiros, Biotechnol. Prog., 18, 1451, 2002. [117] T. Matsuda, T. Harada, and K. Nakamura, Green Chem., 6, 440, 2004. [118] H. S. Lee, W. G. Lee, S. W. Park, H. Lee, and H. N. Chang, Biotechnol. Tech., 7, 267, 1993. [119] J. McHardy and S. P. Sawan, “Supercritical fluid cleaning: fundamentals, technology, and applications,” Noyes Publications, 1998. [120] J. W. King and L. L. Williams, Current. Opin. Solid State Mater. Sci., 7, 413, 2003. [121] G. D. Porta, M. C. Volpe, and E. Reverchon, J. Supercrit. Fluids., 37, 409, 2006. [122] C. C. Tsai, H. M. Lin, M. J. Lee, “Solubility of Disperse Dyes of Blue 56, Violet 1, and Yellow 54 in Supercritical Carbon Dioxide with or without Cosolvent,” The 4th International Symposium on Supercritical Fluid Technology for Energy, Environment and Electronics Application, Taipei, 2005. [123] D. Knittel, W. Saus, and E. Schollmeyer, J. Textile Res., 84, 534, 1993. [124] T. Koga, Y. S. Seo, K. Shin, Y. Zhang, M. H. Rafailovich, J. C. Sokolov, B. Chu, and S. K. Satija, Macromolecules, 36, 5236, 2003. [125] B. Barbara, S. Giuseppe, M. Massimo, R. Arvind, and M. Marco, J. Polym. Sci. B, 44, 1531, 2006. [126] K. P. Johnston and P. S. Shah, Science, 303, 482, 2007. [127] Sumitomo Chemical Co., Ltd., French Patent 1524533, 1968. [128] M. Hagiwara, H. Mitusi, S. Machi, and T. Kagiya, J. Polym. Sci. A-1, 6, 603, 1968. [129] G. Srinivasan and J. R. Elliott, Ind. Eng. Chem. Res., 31, 1414, 1992. [130] J. L. Kendall, D. A. Canelas, J. L. Young, and J. M. DeSimone, Chem. Rev., 99, 543, 1999. [131] S. M. Howdle, M. S. Watson, M. J. Whitaker, V. K. Popov, M. C. Davies,F. S. Mandel, J. D. Wang, and K. M. Shakesheff, Chem. Commun., 109, 2001. [132] M. Tang, T. Y. Wen, T. B. Du, and Y. P. Chen, Eur. Polym. J., 39, 143, 2003. [133] S. Partap, A. K. Hebb, I. ur Rehman, J. A. Darr, Polym. Bull., 58, 849, 2007. [134] A. L. Douglas and J. S. Kenneth, Chem. Rev., 95, 1431, 1995. [135] J. W. Green, M. J. Rubal, B. M. Osman, R. L. Welsch, P. E. Cassidy, J. W. Fitch, and M. T. Blanda, Polym. Adv. Technol., 11, 820, 2000. [136] C. Domingo, E. Loste, and J. Fraile, J. Supercrit. Fluids., 37, 72, 2006. [137] 蕭心瑜, “高分子與鐵複合材料之製備,” 清華大學化工系碩士論文, 2005. [138] M. Modell, US Patent 4338199, 1982. [139] J. Gao, J. Am. Chem. Soc., 115, 6893, 1993. [140] A. Shanableh, Wat. Res., 34, 945, 2000. [141] I. Yutaka, S. Osamu, S. Masahiro, H. Kiyotaka, and A. Masahiko, Chem. Eng. Sci., 58, 935, 2003. [142] P. York, PSTT, 2, 430, 1999. [143] J. Jung and M. Perrut, J. Supercrit. Fluids, 20, 179, 2001. [144] Y. Hakuta, H. Hayashi, and K. Arai, Curr. Opin. Solid State Mater. Sci., 7, 341, 2003. [145] B. Chehroudi, Combust. Sci. and Tech., 178, 555, 2006. [146] E. Reverchon and R. Adami, J. Supercrit. Fluids, 37, 1, 2006. [147] M. Bahrami and S. Ranjbarian, J. Supercrit. Fluids, 40, 263, 2007. [148] L. T. Canham, A. G. Cullis, C. Pickering, O. D. Dosser, T. I. Cox, and T. P. Lynch, Nature, 368, 133, 1994. [149] Y. Mizushima and M. Hori, J. Mater. Sci., 30, 1551, 1995. [150] K. S. Morely, P. C. Marr, P. B. Webb, A. R. Berry, F. J. Allison, G. Moldovan, P. D. Brown, and S. M. Howdle, J. Mater. Chem., 12, 1898, 2002. [151] T. Wahlbrink, D. Küpper, Y. M. Georgiev, J. Bolten, M. Möller, David Küpper, M. C. Lemme, and H. Kurz, Microelectron. Eng., 83, 1124, 2006. [152] T. Beena, S. Kalpesh, S. Basha, and J. R. Vir, J. Nanosci. Nanotechnol., 6, 1584, 2006 [153] Y. P. Sun, R. Guduru, F. Lin, and T. Whiteside, Ind. Eng. Chem. Res., 39, 4663, 2000. [154] Y. Chernyak, F. Henon, R. B. Harris, R. D. Gould, R. K. Franklin, J. R. Edward, J. M. Desimone, and R. G. Carbonell, Ind. Eng. Chem. Res., 40, 6118, 2001. [155] M. Türk, B. Helfgen, P. Hils, R. Lietzow, and K. Schaber, Part. Part. Syst. Charact., 19, 327, 2002. [156] K. Moribe, S. Tsutsumi, S. Morishita, H. Shinozaki, Y. Tozuka, T. Oguchi, and K. Yamamoto, Chem. Pharm. Bull., 53, 1025, 2005. [157] R. Thakur and R. B. Gupta, J. Supercrit. Fluids, 37, 307, 2006. [158] E. Reverchon, C. Celano, G. Della Porta, A. Di Trolio, and S. Pace, J. Mater. Res., 13, 284, 1998. [159] E. Reverchon, J. Supercrit. Fluids, 15, 1, 1999. [160] K. Chen, X. Zhang, J. Pan, W. Zhang, and W. Yin, Powder Technol., 152, 127, 2005. [161] E. Rodier, H. Lochard, M. Sauceau, and J. J. Letourneau, Eur. J. Pharm. Sci., 26, 184, 2005. [162] M. Henczka, J. Baldyga, and B. Y. Shekunov, Chem. Eng. Sci., 60, 2193, 2005. [163] V. G. Baidakov, J. Chem. Phys., 110, 3955, 1999. [164] J. Kerc, S. Srcic, Z. Knez, P. Sencar-Bozic, Int. J. Pharmac., 182, 33, 1999. [165] N. Elvassore, M. Flaibani, A. Bertucco, P. Caliceti, Ind. Eng. Chem. Res., 42, 5924, 2003. [166] M. J. Whitaker, J. Hao, O. R. Davies, G. Serhatkulu, S. Stolnik-Trenkic, S. M. Howdle, K. M. Shakesheff, J. Control. Release, 101, 85, 2005. [167] J. Zhang, B. Han, J. Liu, X. Zhang, Z. Liu, and J. He, Chem. Commun., 2724, 2001. [168] M. Ohde, H. Ohde, and C. M. Wai, Langmuir, 21, 1738, 2005. [169] J. S. Wang, H. B. Pan, and C. M. Wai, J. Nanosci. Nanotechnol., 6, 2025, 2006. [170] P. W. Atkins, “Physical Chemistry,” W.H. Freeman & Company, 2002. [171] 張仕欣及王崇人, 化學, 56, 209, 1998. [172] 蘇志杰, 機械工業雜誌, 255, 131, 2004. [173] 何正恩及高振宏, 化工技術, 11, 102, 2003. [174] 吳春桂, 化工技術, 11, 116, 2003. [175] 許樹恩及吳泰伯, “X光繞射原理與材料結構分析,” 中國材料科學學會, 1996. [176] 林敬二及林宗義, “儀器分析,” 雅美出版社, 1994. [177] 談駿嵩, 科學發展, 359, 12, 2002. [178] P. Ball and L. Garwin, Nature, 355, 761, 1992. [179] S. Auer and D. Frenkel, Nature, 413, 711, 2001. [180] S.C. Liao, W.E. Mayo, and K.D. Pae, Acta Mater., 45, 4027, 1997. [181] P. S. Shah, J. D. Holmes, K. P. Johnston, B. A. Korgel, J. Phys. Chem. B 106 (2002) 2545. [182] E. P. Cristina, L. Massimo, P. B. Iván, and M. A. López-Quintela, Langmuir, 22, 7027, 2006. [183] Y. Xiong, I. Washio, J. Chen, H. Cai, Z. Li, and Y. Xia, Langmuir, 22, 8563, 2006. [184] I. Washio, Y. Xiong, Y. Yin, and Y. Xia, Adv. Mater., 18, 1745, 2006. [185] T. Sugimoto, “Monodispersed Nanoparticles,” Elsevier, 2001. [186] R. Salvati, A. Longo, G. Carotenuto, L. Nicolais, S. De Nicola, and G. P. Pepe, Eur. Phy. J. B, 41, 43, 2004. [187] 林麗娟, 工業材料, 86, 100, 1994. [188] Y. Sun, B. Gates, B. Mayers, and Y. Xia, Nano Lett., 2, 165, 2002.
摘要: 
銀不論在傳統工業、電子工業、光電科技及醫藥保健方面都有廣大的應用,銀尺寸愈小表面原子數愈多,化性活性大,可低溫燒結,電阻抗值低,表面電漿效應愈大,光吸收度及微波吸收度也大幅增加,也有更強的生化活性及殺菌能力。奈米銀的均勻性及形狀亦會影響熱電及光學性質,長寬比大的奈米銀具較低的表面電漿子共振頻率,會影響光波吸收與散射。而超臨界流體由於有良好的流動性、擴散性、質傳能力及高密度,能增加溶解度及反應速率,也能夠改變溶劑及界面活性劑尾部溶劑化的能力,可以用來控制奈米粒子的結構並加強分散效果。

目前文獻中尚未發現以超臨界流體輔助多元醇合成奈米結構,因此本研究將利用超臨界流體輔助多元醇方法合成銀奈米結構,使反應溶液迅速達到過飽和並提高溶解力,讓奈米銀快速成核,加強質傳效率,提高反應速率,並達到節能的效果。而由於奈米銀顆粒小表面能大,故加入聚乙烯吡咯烷酮(Polyvinyl pyrrolidone, PVP)保護避免團聚,不過PVP除了做穩定劑外,其在溶液中會形成末端氫氧基(-OH)可幫助還原,所以本研究另外在不添加還原劑的情況下,以去離子水做溶劑來證明其具備有還原能力。此外PVP也是一種面向選擇劑,會包覆在銀的(100)晶面上,本研究亦利用其吸附特性,加上調控超臨界流體的密度合成不同形狀的銀奈米結構。

本研究之原理類似反溶劑法,選用二氧化碳當作超臨界流體,以硝酸銀為前驅物,乙二醇或去離子水為還原劑及溶劑,並加入PVP做為保護劑,探討不同溫度、壓力、保護劑含量、保護劑分子量、前驅物濃度等變數對銀奈米粒子的影響,並改變進料程序以合成不同形狀的銀奈米結構,最後利用UV-Vis頻譜、XRD、TEM、FESEM及AFM來分析其特性。可歸納出以下重要成果:
(1) 不添加還原劑只以去離子水做溶劑的情況下,證明PVP本身具有還原能力,只是還原力較乙二醇弱,所以可做為促進劑。
(2) 在最適當的配方下,藉由變化超臨界二氧化碳的溫度及壓力,本研究成功合成面心立方之均勻分散的奈米銀粒子,粒徑約在5-25nm左右。
(3) 調整超臨界二氧化碳密度可以操控奈米銀粒子粒徑,增加溫度可以增加成長速率,使奈米銀粒徑增加;增加壓力可提升成核速率,合成較小之奈米銀粒子。
(4) 改變進料程序可以合成高長寬比的一維奈米銀線結構。改變超臨界二氧化碳密度可以操控奈米銀線直徑、長寬比及生成量。
(5) 增加操作溫度可以幫助奈米銀線成長,使直徑及長寬比增加;增加操作壓力可合成直徑較小的奈米銀線,並使生成量增多,長寬比增加。

Silver has been great interest in traditional industries, microelectronics, electronic and photonics technology, medicine and health care. The smaller size of silver structures have much surface atoms, higher chemical property and activity, low sintering temperature, and higher electrically conductivity. The surface plasmon resonance, light and microwave absorbency, biochemical activity, and bactericidal activity can be enhanced with decreasing diameter of silver. The dispersity and shape of silver nanostructures also affect thermal, electrically, and optical characteristic. The high aspect nanostructures which lower surface plasmon resonance frequency would influence light absorbency and scatter. In addition, the superior fluidity, diffusivity, mass transfer, and high density of supercritical fluids can increase solubility and reaction rate. The supercritical fluids which have changing the salvation of solvent and surfactant tails also can use to manipulate nano-structures and enhance the dispersive ability of nano-particles in liquid.

In the references, it is never been found the supercritical fluids-assisted synthesis of nanostructure in polyol process. Accordingly, this research will synthesize silver nanostructures by supercritical fluid assisted with polyol process to make reactive solution reaching supersaturation speedily to increase nucleation rate of silver, and promote mass transfer and reaction rate. Polyvinyl pyrrolidone (PVP) can protect silver to stable dispersions against agglomeration. Besides, the terminated ends with hydroxyl group would help reduce in the presence of aqueous solution. This study proves it is able to synthesize silver in de-ionic water without the addition of any reducing agent. Furthermore, PVP is a facet-selective capping agent to exhibit silver (100) plane. The different shape silver nanostructures can be synthesized by using the absorbability of PVP molecules and manipulating supercritical fluids density.
Silver nanostructures have been synthesized by the ethylene glycol with the assistance of supercritical carbon dioxide, with silver nitrate used as the base material, PVP as the stabilizer for the silver clusters, and ethylene glycol as the reducing agent and solvent. In this research, the effects of the temperature, pressure, molar ratio of PVP/AgNO3, molecular weight of PVP, and the concentration of AgNO3 on as-synthesized silver nano-structures in dispersion solution are characterized by UV-Visible spectroscopy, XRD, TEM, FESEM, and AFM. As shown in the results, the significant conclusions are summarized as below:
(1) PVP has reducing power in de-ionic water without the addition of any reducing agent, but the ability is weaker than ethylene glycol.
(2) The face-centered cubic structure and uniform dispersion silver nano-particles have been successfully prepared with the diameters between 5-25nm by manipulation temperature and pressure in most suitable condition.
(3) The size of silver nano-particles can be controlled by adjusting supercritical carbon dioxide density. Increasing temperature would raise growth rate to enlarge the particle size of silver, but increasing pressure promote nucleation rate to fabricate smaller particles.
(4) The two inlets process can synthesize high aspect ratio of silver nano-wires; and the size, aspect ratio, and yield can be controlled by varying density of supercritical carbon dioxide.
Increasing temperature would help growth to enlarge the size and aspect ratio of silver nano-wires, while increasing pressure can synthesize smaller size and higher aspect ratio and yield of silver nanowires.
URI: http://hdl.handle.net/11455/3611
其他識別: U0005-0502200815260100
Appears in Collections:化學工程學系所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.