Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/36126
DC Field | Value | Language |
---|---|---|
dc.contributor | 鄭萬興 | zh_TW |
dc.contributor | 楊長賢 | zh_TW |
dc.contributor | 王強生 | zh_TW |
dc.contributor | 詹迺立 | zh_TW |
dc.contributor | 林讚標 | zh_TW |
dc.contributor | 趙光裕 | zh_TW |
dc.contributor.advisor | 王國祥 | zh_TW |
dc.contributor.advisor | Co-Shine Wang | en_US |
dc.contributor.author | 楊靜瑩 | zh_TW |
dc.contributor.author | Yang, Chin-Ying | en_US |
dc.contributor.other | 中興大學 | zh_TW |
dc.date | 2007 | zh_TW |
dc.date.accessioned | 2014-06-06T07:53:55Z | - |
dc.date.available | 2014-06-06T07:53:55Z | - |
dc.identifier | U0005-2612200613381600 | zh_TW |
dc.identifier.citation | 伍、 參考文獻 吳志賢。2006。百合花藥早期嶄新基因之特性分析與百合花粉乾燥相關之LLA23基因。國立中興大學碩士論文。 胡適宜。1991。被子植物之胚胎學,曉園出版社,25-33頁。 張良棋。2001。百合SKP1和一花粉專一性cDNAs之特性分析。國立中興大學碩士論文。 Amitai-Zeigerson, H., Scolnik, P. A., and Bar-Zvi, D. (1994) Genomic nucleotide sequences of tomato Asr2, a second member of the stress/ripening-induced Asr1 gene family. Plant Physiol. 106: 1699-1700. Attipalli, P. P., Kollura, V. C., Munusamy, V. (2004) Drought-induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161: 1189-1202. Bedinger, P. A. (1992) The remarkable biology of pollen. Plant Cell 4: 879-887. Bots, M., Vergeldt, F., Wolters-Arts, M., Weterings, K., van, As. H., and Mariani, C. (2005) Aquaporins of the PIP2 class are required for efficient anther dehiscence in Tobacco. Plant Physiol. 137: 1049- 1056. Bradford, M. M. (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72: 284-282. Brady, S. M., Sarkar, S. F., Bonetta, D., and McCourt, P. (2003) The ABSCISIC ACID INSENSITIVE 3 (ABI3) gene is modulated by farnesylation and is involved in auxin signaling and lateral root development in Arabidopsis. Plant J. 34: 67-75. Bray, E. A. (1997) Plant responses to water deficit. Trends Plant Sci. 2: 48-54. Bray, E. A., Bailey-Serres, J., and Weretilnyk, E. (2000) Responses to abiotic stresses. In: Gruissem W, Buchannan B, Jones R (eds) Biochemistry and molecular biology of plants. American Socoety of Plant Physiologists, Rockville, MD 1158-1249. Brocard-Gifford, I., Lynch, T. J., Garcia, M. E., Malhotra, B., and Finkelstein, R. R. (2004) The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16: 406-421. Brocard, I. M., Lynch, T. J., and Finkelstein, R. R. (2002) Regulation and role of the Arabidopsis abscisic acid-insensitive 5 gene in abscisic acid, sugar, and stress response. Plant Physiol. 129: 1533-1543. Burnette, W. N. (1981) “Western blotting”: Electrophoretic transfer of proteins from sodium dodecyl sulfate-polyacrylamide gels to unmodified nitrocellulose and radioiodinated protein A. Anal. Biochem. 112: 195-203. Cakir, B., Agasse, A., Gaillard, C., Saumonneau A., Delrot, S., and Atanassova, R. (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15: 2165-2180. Canel, C., Bailey-Serres, J. N., and Roose, M. L. (1995) Pummelo fruit transcript homologous to ripening-induced gene. Plant Physiol. 108: 1323-1324. Carrari, F., Fernie, A. R., and Iusem, N. D. (2004) Heard it through the grapevine? ABA and sugar cross-talk: the ASR story. Trends Plant Sci. 9: 57-59. Chang, S., Puryear, J. D., Dias, M. A. D.L., Funkhauser, E. A., Newton, R. G., and Cairney, J. (1996) Gene expression under water deficit in loblolly pine (Pinus taeda L.): Isolation and characterization of cDNA clones. Physiol. Plant. 97: 139-148. Chaves, M. M., Maroco, J. P., and Pereira, J. S. (2003) Understanding plant responses to drought-from genes to the whole plant. Funct. Plant Biol. 30: 239-264. Chinnusamy, V., Jagendorf, A., and Zhu, J. K. (2005) Understanding and improving salt tolerance in plants. Crop Sci. 45: 437-448. Chinnusamy, V., Zhu, J., and Zhu, J. K. (2006) Salt stress signaling and mechanisms of plant salt tolerance. Genet. Eng. 27: 141-177. Conklin, P. I. (2001) Recent advances in the role and biosynthesis of ascorbic acid in plants. Plant Cell Environ. 24: 383-394. Cornic, G. (2000) Drought stress inhibits photosynthesis by decreasing stomatal aperture-not by affecting ATP synthesis. Trends Plant Sci. 5: 187-188. Damianos, S. S., Nikolaos, V., P., Konstantinos, A. P., Eleni, D., Pliakonis, I. D., Delis, D. I., Yakoumakis, A. K., Anastasia, K. P., Euripides, G. S., and Kalliopi, A. R. A. (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in Tobacco and Grapevine. Plant Cell 18: 2767-2781. Daniela, N. S., Jörg, B., and Thomas, D. (2004) The MADS box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. Plant Physiol. 134: 1069-1079. De Bruxelles, G. L., Peacock, W. J., and Dennis, E. S. (1996) Abscisic acid induces the alcohol dehydrogenase gene in Arabidopsis. Plant Physiol. 111: 381-391. Dóczi, R., Csanaki, C., and Bánfalvi, Z. (2002) Expression and promoter activity of the desiccation-specific Solanum tuberosum gene, StDS2, Plant Cell Environ. 25: 1197-1203. Downie, B., Gurusinghe, S., Dahal, P., Thacke,r R. R., Snyder, J. C., Nonogaki, H., Yim, K., Fukanaga, K., Alvarado, V., and Bradford, K. J. (2003) Expression of a GALACTINOL SYNTHASE gene in tomato seeds is up-regulated before maturation desiccation and again after imbibition whenever radicle protrusion is prevented. Plant Physiol. 131: 1347-1359. Elizabeth, A. W., Kristin, J., Alexander, M. D., Jamie, D. S., Peter, S. S., and Barbara, A. M. (2001) Maintaining methylation activities during salt stress. The involvement of adenosine kinase. Plant Physiol. 125: 856-865. Elke, M., Hellwege, S. C., Anuschka, J., Lothar, W., and Arnd, G. H. (2000) Transgenic potato (Solanum tuberosum) tubers synthesize the full spectrum of inulin molecules naturally occurring in globe artichoke (Cynara scolymus) roots. Proc. Natl. Acad. Sci. U.S.A. 97: 8699-8704. Endo, M., Matsubaraa, H., Kokubuna, T., Masukoa, H., Takahataa. Y., Tsuchiyab, T., Fukudacid, H., Demurad, T., and Watanabea, M. (2002) The advantages of cDNA microarray as an effective tool for identification of reproductive organ-specific genes in a model legume, Lotus japonicus. FEBS Lett. 514: 229-237. Fedoroff, N. V. (2002) Cross-talk in abscisic acid signaling. Sci. STKE RE10. Filichkin, S. A., Leonard, J. M., Monteros, A., Liu, P. P., and Nonogaki, H. (2004) A novel endo-beta-mannanase gene in tomato LeMAN5 is associated with anther and pollen development. Plant Physiol. 134: 1080-1087. Finkelstein, R. R., Gampala, S. S., and Rock, C. D. (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14(Suppl): S15-S45. Finkelstein, R. R., Wang, M. L., Lynch, T. J., Rao, S., and Goodman, H. M. (1998) The Arabidopsis abscisic acid response locus ABI4 encodes an APETALA 2 domain protein. Plant Cell 10: 1043-1054. Frank, M., Rupp, H., and Prinsen, E. (2000) Hormone autotrophic growth and differentiation identifies mutant lines of Arabidopsis with altered cytokinin and auxin content or signaling. Plant Physiol. 122: 721-730. Frascaroli, R. E., and Tuberosa. (1993) Effect of abscisic acid on pollen germination and tube growth of maize. Plant Breed. 110: 250-254. Garay-Arroyo, A., Colmenero-Flores, J. M., Garciarrubio, A., and Covarrubias, A. A. (2000) Highly hydrophilic proteins in prokaryotes and eukaryotes are common during conditions of water deficit. J. Biol. Chem. 275: 5668-5674. Godoy, J. A., Pardo, J. M., and Pintor-Toro, J. A. (1990) A tomato cDNA inducible by salt stress and abscisic acid: nucleotide sequence and expression pattern. Plant Mol. Biol. 15: 695-705. Golovina, E. A., Hoekstra, F. A., and Hemminga, M. A. (1998) Drying increases intracellular partitioning of amphiphilic substances into the lipid phase: impact on membrane permeability and significance for desiccation tolerance. Plant Physiol. 118: 975-986. Gould, K. S. and Elizabeth, M. L. (1988) Growth of anthers in Lilium longiforum. Planta 193: 373-384. Grelet, J., Benamar, A., Teyssier, E., Avelange-Macherel, M. H., Grunwald, D., and Macherel, D. (2005) Identification in pea seed mitochondria of a late-embryogenesis abundant protein able to protect enzymes from drying. Plant Physiol. 137:157-67. Gupta, R., Ting, J. T., Sokolov, L. N., Johnson, S. A., and Luan, S. (2002) A tumor suppressor homolog, AtPTEN1, is essential for pollen development in Arabidopsis. Plant Cell 14: 2495-2507. Hasegawa, P. M., Bressan, R. A., Zhu, J. K., and Bohnert, H. J. (2000) Plant cellular and molecular responses to high salinity. Annu. Rev. Plant Physiol. Plant Mol. Biol. 51: 463-499. Hetherington, A. M. (2001) Guard cell signaling. Cell 107: 711-714. Himmelbach, A., Hoffmann, T., Leube, M., Hohener, B., and Grill, E. (2002) Homeodomain protein ATHB6 is a target of the protein phosphatase ABI1 and regulates hormone responses in Arabidopsis. EMBO J. 21: 3029-3038. Himmelbach, A., Yang, Y., and Grill, E. (2003) Relay and control of abscisic acid signaling. Curr. Opin. Plant Biol. 6: 470-479. Hong, S. H., Kim, I. J., Yang, D. C., and Chung, W. I. (2002) Characterization of an abscisic acid responsive gene homologue from Cucumis melo. J. Exp. Bot. 53: 2271-2272. Honys, D., and Twell, D. (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol. 132: 640-652. Honys, D., and Twell, D. (2005) Transcriptome analysis of haploid male gametophyte development in Arabidopsis. Genome Biol. 5: R85. Hoth, S., Morgante, M., Sanchez, J. P., Hanafey, M. K., Tingey, S. V., and Chua, N. H. (2002) Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J. Cell Sci. 115: 4891-4900. Huang, J. C., Lin, S. M., and Wang, C. S. (2000) A pollen-specific and desiccation-associated transcript in Lilium longiflorum during development and stress. Plant Cell Physiol. 41: 477-485. Huang, J., Chen, F., Casino, C. D., Autino, A., Shen, M., Yuan, S., Peng, J., Shi, H., Wang, C., Cresti, M., and Li, Y. (2006) An ankyrin repeat-containing protein, characterized as a ubiquitin ligase, is closely associated with membrane-enclosed organelles and required for pollen germination and pollen tube growth in Lily. Plant Physiol. 140: 1374-1383. Huijser, C., Kortstee, A., Pego, J., Weisbeek, P., Wisman, E., and Smeekens, S. (2000) The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABI4: involvement of abscisic acid in sugar responses. Plant J. 23: 577-585. Hurkman, W. J., and Tanaka, C. K. (1986) Solubilization of plant membrane proteins for analysis by two-dimensional gel electrophoresis. Plant Physiol. 81: 802-806. Ishiguro, S., Kawai-Oda, A., Ueda, K., Nishida, I., and Okada, K. (2001) The DEFECTIVE IN ANTHER DEHISCENCE1 gene encodes a novel phospholipase A1 catalyzing the initial step of jasmonic acid biosynthesis, which synchronizes pollen maturation, anther dehiscence, and flower opening in Arabidopsis. Plant Cell 13: 2191-2209. Iusem, N. D., Bartholomew, D. M., Hitz, W. D., and Scolnik, P. A. (1993) Tomato (Lycopersicon esculentum) transcript induced by water deficit and ripening. Plant Physiol. 102: 1353-1354. Jaglo-Ottosen, K. R., Gilmour, S. J., Zarka, D. G., Schabenberger, O., and Thomashow, M. F. (1998) Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280: 104-106. Kalifa, Y., Perlson, E., Gilad, A., Konrad, Z., Scolnik, P. A., and Bar-Zvi, D. (2004) Over-expression of the water and salt stress-regulated Asr1 gene confers an increased salt tolerance. Plant Cell Environ. 27: 1459-1468. Kawasaki, S., Borchert, C., Deyholos, M., Wang, H., Brazille, S., Kawai, K., Galbraith, D., and Bohnert, H. (2001) Gene expression profiles during the initial phase of salt stress in rice. Plant Cell 13: 889-905. Kurkela, S., and Borg-Franck, M. (1992) Structure and expression of kin2,one of two cold- and ABA-induced genes of Arabidopsis thaliana. Plant Mol. Biol. 19: 689-692. Laemmli, U. K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680-685. Lawlor, D. W. (2002) Limitation to photosynthesis in water stressed leaves: stomata vs. metabolism and the role of ATP. Ann. Bot. 89: 1-15. Leonardo, D., Gómez, S. B., Alison, G., Yi, L., and Ian, A. G. (2006) Delayed embryo development in the ARABIDOPSIS TREHALOSE-6-PHOSPHATE SYNTHASE 1 mutant is associated with altered cell wall structure, decreased cell division and starch accumulation. Plant J. 46: 69-84. Levchenko, V., Konrad, K. R., Dietrich, P., Roelfsema, M. R., and Hedrich, R. (2005) Cytosolic abscisic acid activates guard cell anion channels without preceding Ca2+ signals. Proc. Natl. Acad. Sci. U.S.A. 102: 4203-4208. Lin, C., and Thomashow, M. F. (1992) DNA sequence analysis of a complementary DNA for cold-regulated Arabidopsis gene cor15 and characterization of the COR15 polypeptide. Plant Physiol. 99: 519-525. Lopez-Molina, L., Mongrand, S., and Chua, N. H. (2001) A post- germination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis. Proc. Natl. Acad. Sci. U.S.A. 98: 4782-4787. Mascarenhas, J. P. (1990) Gene activity during pollen development. Annu. Rev. Plant Physiol. 41: 317-338. Maskin, L., Gudesblat, G. E., Moreno, J. E., Carrari, F. O., Frankel, N., Sambade A., Rossi, M., and Iusem, N. D. (2001) Differential expression of the members of the Asr gene family in tomato (Lycopersicon esculentum). Plant Sci. 161: 739-746. Mbeguie-A-Mbeguie, D., Gomez, R. M., and Fils-Lycaon, B. (1997) Molecular cloning and nucleotide sequence of a protein from apricot fruit (accession No. U82760) homologous to LEC14B protein isolated from Lithospermum gene expression during fruit ripening (PGR 97–161). Plant Physiol. 115: 1288. McCormick, S. (1993) Male gametophyte development. Plant Cell 5: 1265-1275. McCormick, S. (2004) Control of male gametophyte development. Plant Cell 16: 142-153. Merlot, S., Gosti F., Guerrier, D., Vavasseur, A., and Giraudat, J. (2001) The ABI1 and ABI2 protein phosphatases 2C act in a negative feedback regulatory loop of the abscisic acid signalling pathway. Plant J. 25: 295-303. Moretti, M. B., Maskin, L., Gudesblat, G., García, S. C., and Iusem, D. N. (2006) ASR1, a stress-induced tomato protein, protects yeast from osmotic stress. Physiol. Plant. 127: 111-118. Munne-Bosch, S., and Algere, L. (2003) Drought-induced changes in the redox state of alpha-tocopherol, ascorbate, and the diterpene carnosic acid in chloroplasts of Labiatae species differing in carnosic acid contents. Plant Physiol. 131: 1816-25. Nakayama, H., Yoshida, K., Ono, H., Murooka, Y., and Shinmyo, A. (2000) Ectoine, the compatible solute of Halomonas elongata, confers hyperosmotic tolerance in cultured tobacco cells. Plant Physiol. 122: 1239-1247. Nambara, E., and Marion-Poll, A. (2005) Abscisic acid biosynthesis and catabolism. Annu. Rev. Plant Biol. 56: 165-185. Ndong, C., Danyluk, J., Wilson, K. E., Pocock, T., Huner, N. P. A., and Sarhan, F. (2002) Cold-regulated cereal chloroplast late embryogenesis abundant-like proteins molecular characterization and functional analyses. Plant Physiol. 129: 1368-1381. Noctor, G., Gomez, L., Vanacker, H., and Foyer, C. H. (2002) Interactions between biosynthesis, compartmentation and transport in the control of glutathione homeostasis and signaling. J. Exp. Bot. 53: 1283-304. Ohta, M., Guo, Y., Halfter, U., and Zhu, J. K. (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc. Natl. Acad. Sci. U.S. A. 100: 11771-11776. Osakabe, Y., Maruyama, K. Seki, M., Satou, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2005) Leucine-rich repeat receptor-like kinase1 is a key membrane-bound regulator of abscisic acid early signaling in Arabidopsis. Plant Cell 17: 1105-1119. Padmanabhan, V., Dias, D. M., and Newton, R. J. (1997) Expression analysis of a gene family in loblolly pine (Pinus taeda L.) induced by water deficit stress. Plant Mol. Biol. 35: 801-807. Pan, Y. Y., Wang, X., Ma, L. G., and Sun, D. Y. (2005) Characterization of Phosphatidylinositol-Specific Phospholipase C (PI-PLC) form Lilium daviddi pollen. Plant Cell Physiol. 46: 1657-1665. Pert, I. H., Gehwolf, R., and Obermeyer, G. (2005) The distribution of membrane-bound 14-3-3 proteins in organelle-enriched fractions of germinating lily pollen. Plant Biol. 7:140-147. Pina, C., Pinto, F., Feijo, J. A., and Becker, J. D. (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol. 138: 744-56. Quesada, V., Ponce, N. R., and Micol, J. L. (2000) Genetic analysis of salt-tolerant mutants in Arabidopsis thaliana. Genetics 154: 421-436. Reddy, A. R., Chaitanya, K. V., and Vivekanadan, M. (2004) Drought- induced responses of photosynthesis and antioxidant metabolism in higher plants. J. Plant Physiol. 161: 1189-1202. Riccardi, F., Gazeau P., de Vienne, D., and Zivy, M. (1998) Protein changes in response to progressive water deficit in maize. Plant Physiol. 117: 1253-1263. Rieu, I., Wolters-Arts, M., Derksen, J., Mariani, C., and Weterings, K. (2003) Ethylene regulates the timing of anther dehiscence in tobacco. Planta 217: 131-137. Romola, J. D., and Mark, T. (2000) A weakly voltage-dependent, nonselective cation channel mediates toxic sodium influx in wheat . Plant Physiol. 122: 823-834. Rossi, M., and Iusem, N. D. (1994) Tomato (Lycopersicon esculentum) genomic clone homologous to a gene encoding an abscisic acid-induced protein. Plant Physiol. 104: 1073-1074. Rouse, D. T., Marotta, R., and Parish, R. W. (1996) Promoter and expression studies on an Arabidopsis thaliana dehydrin gene. FEBS Letters 381: 252-256. Sakamoto, A., and Murata, N. (2002) The role of glycine betaine in the protection of plants from stress: clues from transgenic plants. Plant Cell Environ. 25: 163-171. Sambrook, J. E., Fritsch, E. T., and Maniatis, R. (1989) Molecular cloning: A laboratory manual, 2rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York. Scholz-Starke, J., Buttner, M., and Sauer, N. (2003) AtSTP6, a new pollen-specific H+-monosaccharide symporter from Arabidopsis. Plant Physiol. 131: 70-77. Scott, R. J. (1993) Anther development: a molecular perspective. In: Jordan B. R, ed. The molecular biology of flowering. Wallingford, UK: CAB International, p 141-184. Shary, S., Kumar, R., and Guha-Mukherjee, G. (2006) Isolation of pollen early genes and analysis of expression pattern during the development of male gametophyte. Plant Sci. 170: 417-425. Shinozaki, K., and Yamaguchi-Shinozaki, K. (2000) Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr. Opin. Plant Biol. 3: 217-223. Shinozaki, K., Yamaguchi-Shinozaki, K., and Seki, M. (2003) Regulatory network of gene expression in the drought and cold stress responses. Curr. Opin. Plant Biol. 6: 410-417. Shoji, T., Suzuki, K., Abe, T., Kaneko, Y., Shi, H., Zhu, J. K., Rus, A., Hasegawa, P. M., and Hashimoto, T. (2006) Salt stress affects cortical microtubule organization and helical growth in Arabidopsis. Plant Cell Physiol. 47: 1158-1168. Silhavy, D., Hutvagner, G., Barta, E., and Banfalvi, Z. (1995) Isolation and characterization of a water-stress inducible cDNA clone from Solanum chacoense. Plant Mol. Biol. 27: 587-595. Sivamani, E., Bahieldin, A., Wraith, J. M., Ai-Niemi, T., Dyer, W. E., Ho, T. D., and Qu, R. (2000) Improved biomass productivity and water use efficiency under water deficit conditions in transgenic wheat constitutively expressing the barley HVA1 gene. Plant Sci. 155: 1-9. Smith, D. E., and Fisher, P. A. (1984) Identification, developmental regulation and response to heat shock of two antigenically related forms of a major nuclear enveloped method for affinity purification of antibodies using polypeptides immobilized on nitrocellulose blots. J. Cell Biol. 99: 20-28. Stadler, R., Truernit, E., Gahrtz, M., and Sauer, N. (1999) The AtSUC1 sucrose carrier may represent the osmotic driving force for anther dehiscence and pollen tube growth in Arabidopsis. Plant J. 19: 269-278. Steiner, C., Bauer, J., Amrhein, N., and Bucher, M. (2003) Two novel genes are differentially expressed during early germination of the male gametophyte of Nicotiana tabacum. Biochem. Biophys. Acta 1625: 123-133. Suen, D. F., Wu S. S., Chang, H. C., Dhugga, K. S., and Huang, A. H. (2003) Cell wall reactive proteins in the coat and wall of maize pollen potential role in pollen tube growth on the stigma and through the style. J. Biol. Chem. 278: 43672-43681. Sugiharto, B., Ermawati, N., Mori, H., Aoki, K., Yonekura- Sakakibara, K., Yamaya, T., Sugiyama, T., and Sakakibara, H. (2002) Identification and characterization of a gene encoding drought-inducible protein localizing in the bundle sheath cell of sugarcane. Plant Cell Physiol. 43: 350-354. Tamura, T., Hara, K., Yamaguchi, Y., Koizumi, N., and Sano, H. (2003) Osmotic stress tolerance of transgenic tobacco expressing a gene encoding a membrane-located receptor-like protein from tobacco plants. Plant Physiol. 131: 454-462. Twell, D., Park, S.K., and Lalanne, E. (1998) Asymmetric division and cell fate determination in developing pollen. Trends Plant Sci. 3: 305-310. Vaidyanathan, R., Kuruvilla S., and Thomas, G. (1999) Characterization and expression pattern of an abscisic acid and osmotic stress responsive gene from rice. Plant Sci. 140: 21-30. Wang, M. L., Hsu, C. M., Chang, L. C., Wang, C. S., Su, T. H., John Huang, Y. J., Jiang, L., and Jauh, G. Y. (2004) Gene expression profiles of cold-stored and fresh pollen to investigate pollen germination and growth. Plant Cell Physiol. 45: 1519-1528. Wang, H. J., Hsu, C. M., Jauh, G. Y., and Wang, C. S. (2005) A lily pollen ASR protein localizes to both cytoplasm and nuclei requiring a nuclear localization signal. Physiol. Plant. 123: 314-320. Wang, C. S., Liau, Y. E., Wu, T. D., Su, C. C., Huang, J. C., and Lin, C. H. (1998) Characterization of a desiccation-related protein in lily pollen during development and stress. Plant Cell Physiol. 39: 1307-1314. Wang, C. S., Walling, L. L., Eckard, K. J., and Lord, E. M. (1992) Immunological characterization of a tapetal protein in developing anthers of Lilium longiflorum. Plant Physiol. 99: 822-829. Wang, C. S., Wu, T. D., Chung, C. K. W., and Lord, E. M. (1996) Two classes of pollen-specific, heat-stable proteins in Lilium longiflorum. Physiol. Plant. 97: 643-650. Wang, W. X., Vinocur, B., Shoseyov, O., and Altman, A. (2001) Biotechnology of plant osmotic stress tolerance: physiological and molecular consideration. Acta Hortic. 506: 285-292. Wu, H. M., and Cheung, A. Y. (2000) Programmed cell death in plant reproduction. Plant Mol. Biol. 44: 267-281. Xu, D., Duan, X., Wang, B., Hong, B., Ho, T. H. D., and Wu, R. (1996) Expression of a late embryogenesis abundant protein gene HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol. 110: 249-257. Xu, H., Swoboda, I., Bhalla, P. L., and Singh, M. B. (1999) Male gametic cell-specific expression of H2A and H3 histone genes. Plant Mol. Biol. 39: 607-614. Yamazaki, D., Yoshida, S., Asami, T., and Kuchitsu, K. (2003) Visualization of abscisic acid-perception sites on the plasma membrane of stomatal guard cells. Plant J. 35: 129-139. Yamaguchi-Shinozaki, K., Kasuga, M., Liu, Q., Nakashima, K., Sakuma, Y., Abe, H., Shinwari1, Z. K., Seki, M., and Shinozaki, K. (2002) Biological mechanisms of drought stress response. JIRCAS J. Sci. Pap. 23: 1-8. Yang, C. Y., Chen, Y. C., Jauh, G. Y., and Wang, C. S. (2005) A lily ASR protein involves in abscisic acid signaling and confers drought and salt resistance in Arabidopsis. Plant Physiol. 139: 836-846. Yang, S. L., Xie, L. F., Mao, H. Z., Puah, C. S., Yang, W. C., Jiang, L., Sundaresan, V., and Ye, D. (2003) Tapetum determinant1 is required for cell specialization in the Arabidopsis anther. Plant Cell 15: 2792-2804. Yoshiba, Y., Nanjo, T., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1999) Stress-responsive and developmental regulation of Δ1-pyrroline-5-carboxylate synthetase 1 (P5CS1) gene expression in Arabidopsis thaliana, Biochem. Biophys. Res. Commun. 261: 766-772. Zhou, W., Takeda, H., Liu, X. Z., Nakagawa, N., Sakurai, N., Huang, J., and Li, Y. Q. (2004) A novel endo-1,4-beta-glucanase gene (LlpCel1) is exclusively expressed in pollen and pollen tubes of Lilium longiflorum. Acta Bot. Sin. 46: 142-147. Zhu, J. K. (2000) Genetic analysis of plant salt tolerance using Arabidopsis. Plant Physiol. 124: 941-948. Zhu, J. K. (2002) Salt and drought stress signal transduction in plants. Annu. Rev. Plant Biol. 53: 247-273. Arenas-Huertero, F., Arroyo, A., Zhou, L., Sheen, J., and Leon, P. (2000) Analysis of Arabidopsis glucose insensitive mutants, gin5 and gin6, reveals a central role of the plant hormone ABA in the regulation of plant vegetative development by sugar. Genes Dev. 14: 2085-2096. Arroyo, A., Bossi, F., Finkelstein, R. R., and Leon, P. (2003) Three genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acid insensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis. Plant Physiol. 133: 231-242. Brocard-Gifford, I., Lynch, T. J., Garcia, M. E., Malhotra, B., and Finkelstein, R. R. (2004) The Arabidopsis thaliana ABSCISIC ACID-INSENSITIVE8 encodes a novel protein mediating abscisic acid and sugar responses essential for growth. Plant Cell 16: 406-421. Cakir, B., Agasse, A., Gaillard, C., Saumonneau A., Delrot, S., and Atanassova, R. (2003) A grape ASR protein involved in sugar and abscisic acid signaling. Plant Cell 15: 2165-2180. Cheng, W. H., Endo, A., Zhou, L., Penney, J., Chen, H. C., Arroyo, A., Leon, P., Nambara, E., Asami, T., Seo, M., Koshiba, T., and Sheen, J. (2002) A unique short-chain dehydrogenase/reductase in Arabidopsis glucose signaling and abscisic acid biosynthesis and functions. Plant Cell 14: 2723-2743. Chiou, T. J., and Bush, D. R. (1998) Sucrose is a signal molecule in assimilate partitioning. Proc. Natl. Acad. Sci. U.S.A. 95: 4784-4788. Ciereszko, I., Johansson, H., and Kleczkowski, L. A. (2001) Sucrose and light regulation of a cold-inducible UDP-glucose pyrophosphorylase gene via a hexokinase-independent and abscisic acid-insensitive pathway in Arabidopsis. Biochem. J. 354: 67-72. Dai, N., Schaffer, A., Petreikov, M., Shahak, Y., and Giller, Y. (1999) Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11:1253-1266. Dekkers, B. J., Schuurmans, J. A., and Smeekens, S. C. (2004) Glucose delays seed germination in Arabidopsis thaliana. Planta 218: 579-588. Fernie, A. R., Roessner, U., and Geigenberger, P. (2001) The sucrose analog palatinose leads to a stimulation of sucrose degradation and starch synthesis when supplied to discs of growing potato tubers. Plant Physiol. 125: 1967-1977. Finkelstein, R. R., Gampala, S. S., and Rock, C. D. (2002) Abscisic acid signaling in seeds and seedlings. Plant Cell 14 Suppl: S15-45. Finkelstein, R. R., and Gibson, S. I. (2001) ABA and sugar interactions regulating development: cross-talk or voices in a crowd? Curr. Opin. Plant Biol. 5: 26-32. Finkelstein, R. R., and Lynch, T. J. (2000) Abscisic acid inhibition of radicle emergence but not seedling growth is suppressed by sugars. Plant Physiol. 122: 1179-1186. Garciarrubio, A., Legaria, J. P., and Covarrubias, A. A. (1997) Abscisic acid inhibits germination of mature Arabidopsis seeds by limiting the availability of energy and nutrients. Planta 203: 182-187 Gazzarrini, S., and Mccourt, P. (2003) Cross-talk in plant hormone signalling: what arabidopsis mutants are telling us. Ann. Bot. 91: 605-612. Gibson, S. I. (2000) Plant sugar-response pathways. Part of a complex regulatory web. Plant Physiol. 124: 1532-1539. Gibson, S. I. (2004) Sugar and phytohormone response pathways: navigating a signalling network. J. Exp. Bot. 55: 253-264. Gibson, S. I. (2005) Control of plant development and gene expression by sugar signaling. Curr. Opin. Plant Biol. 8: 93-102. Goddijn, O., and Smeekens, S. (1998) Sensing trehalose biosynthesis in plants. Plant J. 14: 143-146. Hamann, T. ( 2001) The role of auxin in apical-basal pattern formation during Arabidopsis embryogenesis. J. Plant Growth Regul. 20: 292-299. Hua, J., and Meyerowitz, E. M. (1998) Ethylene responses are negatively regulated by a receptor gene family in Arabidopsis thaliana. Cell 94: 261-71. Huijser, C., Kortstee, A., Pego, J., Weisbeek, P., Wisman, E., and Smeekens, S. (2000) The Arabidopsis SUCROSE UNCOUPLED-6 gene is identical to ABSCISIC ACID INSENSITIVE-4: involvement of abscisic acid in sugar responses. Plant J. 23: 577-585. Hutchison, C. E., and Kieber, J. J. (2002) Cytokinin signaling in Arabidopsis. Plant Cell Suppl: S47-S59. Jang, J. C., Leon, P., Zhou, L., and Sheen, J. (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9: 5-19. Jang, J. C., and Sheen, J. (1994) Sugar sensing in higher plants. Plant Cell 6:1665-1679. Junior, A.V., Nascimento, J. R., and Lajolo, F. M. (2006) Molecular cloning and characterization of an alpha-amylase occuring in the pulp of ripening bananas and its expression in pichia pastoris. J. Agric. Food Chem. 18: 8222-8228. Koch, K. (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 7: 235-246 Lee, S., Cheng, H., King, K. E., Wang, W., He, Y., Hussain, A., Lo, J., Harberd, N. P., and Peng, J. (2002) Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev. 16: 646-658. Leon, P., and Sheen, J. (2003) Sugar and hormone connections. Trends Plant Sci. 8: 110-116. Lloyd, J. C., and Zakhleniuk, O. V. (2004) Responses of primary and secondary metabolism to sugar accumulation revealed by microarray expression analysis of the Arabidopsis mutant, pho3. J. Exp. Bot. 55: 1221-1230. Loreti, E., Alpi, A., and Perata, P. (2000) Glucose and disaccharide- sensing mechanisms modulate the expression of α-amylase in barley embryos. Plant Physiol. 123: 939-948. Moore, B., Zhou, L., Rolland, F., Hall, Q., Cheng, W. H., Liu, Y. X., Hwang, I., Jones, T., and Sheen, J. (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light and hormonal signaling. Science 300: 332-336. Morita, A., Umemura, T., Kuroyanagi, M., Futsuhara,Y., Perata, P., and Yamaguchi, J. (1998) Functional dissection of a sugar-repressed α-amylase gene (RAmy1A) promoter in rice embryos. FEBS Lett. 423: 81-85. Morita-Yamamuro, C., Tsutsui, T., Tanaka, A., Yamaguchi, J. (2004) Knock-out of the plastid ribosomal protein S21 causes impaired photosynthesis and sugar-response during germination and seedling development in Arabidopsis thaliana. Plant Cell Physiol. 45: 781-788. Muday, G. K. (2001) Auxins and tropisms. J. Plant Growth Regul. 20: 226-243. Pego, J. V., Weisbeek, P. J., and Smeekens, S.C.M. (1999) Mannose inhibits Arabidopsis germination via a hexokinase-mediated step. Plant Physiol. 119: 1017-1023. Perata, P., Matsukura, C., Vernieri, P., and Yamaguchi, J. (1997) Sugar repression of a gibberellin-dependent signaling pathway in barley embryos. Plant Cell 9: 2197-2208. Paul, M. J., and Pellny, T. K. (2003) Carbon metabolite feedback regulation of leaf photosynthesis and development. J. Exp. Bot. 54: 539-547. Price, J., Laxmi, A., Steven, K., Martin, S., and Jang, J. C. (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16: 2128-2150. Price, J., Li, T. C., Kang, S. G., Na, J. K., and Jang, J. C. (2003) Mechanisms of glucose signaling during germination of Arabidopsis. Plant Physiol. 132: 1424-1438. Riou-Khamlichi, C. Margit Menges, J. M. Sandra, H., and Murray, J. A. (2000) Sugar control of the plant cell cycle: differential regulation of Arabidopsis D-Type cyclin gene expression. Mol. Cell Biol. 20: 4513-4521. Rock, C., and Quatrano, R. (1995) The role of hormones during seed development. In Plant Hormones: Physiology, Biochemistry and Molecular Biology. p 671-697. Rolland, F., and Sheen, J. (2005) Sugar sensing and signaling in plants. Biochem. Soc. Trans. 33: 269-271. Rolland, F., Moore, B., and Sheen, J. (2002) Sugar sensing and signaling in plants. Plant Cell 14 Suppl: S185-205. Rolland, F., Winderickx, J., and Thevelein, J. M. (2001). Glucose sensing mechanisms in eukaryotic cells. Trends Biochem. Sci. 26: 310-317. Roitsch, T. (1999) Source-sink regulation by sugar and stress. Curr. Opin. Plant Biol. 2: 198-206 Roldań, M., Gómez-Mena, C., Ruiz-Garcıá, L., Salinas, J., and Martıńez-Zapater, J. M. (1999) Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant J. 20: 581-590. Rook, F., Corke, F., | zh_TW |
dc.identifier.uri | http://hdl.handle.net/11455/36126 | - |
dc.description.abstract | LLA23為鐵砲百合(Lilium longiflorum Thunb. cv. Snow Queen)花粉專一性蛋白質,在花粉發育成熟的乾燥時期會大量累積。LLA23屬於ABA-, stress-, and ripening-induced (ASR)蛋白質的一員。為了了解百合ASR蛋白質在植物體內扮演的角色,本研究利用35S啟動子將LLA23轉殖入擬南芥,並以北方及西方墨跡法加以確認。雖然35S::LLA23轉殖株不論是外表型態或是開花時間,皆與野生型無異,但是種子萌發試驗發現35S::LLA23兩轉殖株種子的萌發對離層酸較不敏感。種子休眠試驗發現35S::LLA23兩轉殖株種子與abi4-1相似。轉殖株種子亦展現對高鹽及高滲透壓的抗性,具有較高的萌發率。以上兩轉殖株對離層酸的不敏感特性暗示著百合ASR蛋白質在離層酸之訊息傳遞路徑上可能扮演了調控的角色。即時定量聚合酵素鏈鎖反應的結果顯示,不論有無離層酸處理,百合LLA23蛋白質確實在轉殖植物體內影響了逆境/離層酸反應相關基因的表現。35S::LLA23轉殖植株在乾旱或高鹽處理下較野生型有較高的抗性。缺水12天的野生型植株大部分呈現萎凋,葉片氣孔多為關閉,而兩轉殖株有半數仍然直立,葉片生長正常且氣孔多為開啟。缺水12天的野生型植株葉片離層酸含量遽增近10倍,然而兩轉殖株的離層酸含量沒有太大的變化,說明了轉殖株葉片的氣孔仍然保持敞開的原因。進一步測量滲透勢值,轉殖株葉的滲透勢值與野生型相似,表示轉殖株在乾旱12天下尚不缺水。乾旱過程中葉片水份喪失的比例較野生型慢,而其氣孔卻多為開啟的狀態,顯示百合LLA23蛋白質在葉片中可能扮演保水,不讓水分流失的角色。若再繼續缺水4天,兩轉殖株滲透勢值達到-2.55及-2.98 MPa,呈現植物體內極度缺水,因此轉殖株開始萎凋,葉片氣孔多轉為關閉。葉片蒸散試驗顯示,轉殖株葉片水份喪失程度與野生型相同,但轉殖株的葉片氣孔卻多為打開的狀態,同樣顯示百合LLA23蛋白質在葉內不使水分流失的功能。 種子萌發試驗發現,35S::LLA23轉殖株種子的萌發和後萌發時期小苗的生長對高濃度葡萄糖及甘露糖皆較不敏感。利用六碳糖激酶之競爭型抑制劑,甘露庚酮糖處理下,不論野生型或轉殖株種子萌發受甘露糖抑制的現象,在加入甘露庚酮糖後皆會消失,證實百合ASR蛋白質參與甘露糖經由六碳糖激酶中介的訊息傳遞路徑。低濃度 (10 mM)葡萄糖可解除甘露糖之抑制現象,而35S::LLA23轉殖株不論在種子萌發或後萌發時期之根系生長,對葡萄糖解除甘露糖之抑制現象具較高的敏感性。即時定量聚合酵素鏈鎖反應結果顯示,百合LLA23蛋白質在高糖處理下,確實影響了轉殖植物體內一些逆境相關基因的表現。顯示百合LLA23蛋白質可能參與葡萄糖之訊息傳遞。 百合LLA23基因含有一個插入子,啟動子序列中有許多與離層酸相關的保留序列。百合LLA23蛋白質具有轉錄活化的區段可能在氨基酸17~57之間。利用染色質免疫沉澱分析方式可確定百合LLA23蛋白質與染色質進行結合。蛋白質的結晶試驗仍在進行中。 | zh_TW |
dc.description.abstract | Abstract LLA23, a member of abscisic acid-, stress-, and ripening-induced (ASR) family protein previously isolated from lily (Lilium longiflorum) pollen was abundantly accumulated upon desiccation during anther/pollen development. To provide evidence on the biological role of LLA23 proteins against drought, we used an overexpression approach in Arabidopsis (Arabidopsis thaliana). Northern and Western analyses confirmed the presence of transgene of LLA23 in transgenic plants. Constitutive expression of LLA23 under the cauliflower mosaic virus 35S promoter confered reduced sensitivity to ABA in transgenic seeds and consequently, a reduced degree of seed dormancy which was very similar to that of the abi4-1 mutant. 35S::LLA23 transgenic seeds were able to germinate under unfavorable conditions, such as inhibitory concentrations of mannitol and NaCl. At the molecular level, altered expression of ABA/stress-regulated genes was observed. Thus, our results provide strong in vivo evidence that LLA23 mediates stress-responsive ABA signaling. 35S::LLA23 transgenic plants improved drought and salt resistance. When soil in pots was withheld water for 12 d, most of the wild-type plants became wilted and stomata remained closed whereas about 50% of the two 35S::LLA23 plants kept upstanding and stomata remained open. The level of ABA content in wild-type leaves dramatically increased 10 folds after 12 d of drought stresses when compared with the unstressed leaves. It explains the reason why 35S::LLA23 stomata remained open. Further, the osmotic potential in 35S::LLA23 leaves did not appreciably change upon drought stress for 12 d indicating that the transgenic plants did not sense drought stress. The water loss in transgenic plants was slower than that in wild-type plants at meantime transgenic stomata remained open, reflecting that the LLA23 protein has the water holding ability in transgenic plants. If these plants were continued to withhold water for additional 4 d, transgenic plants began to wilt and their ABA levels in leaves markedly increased. Moreover, most 35S::LLA23 stomata became closed and osmotic potential increased to -2.55 and -2.98 MPa. In vegetative tissues, the transpiration rate in transgenic leaves under drought stress was similar to that in wild-type plants, but most of the 35S::LLA23 stomata remained open also suggesting of a protective role of LLA23 proteins. Constitutive expression of LLA23 in Arabidopsis confers reduced sensitivity to mannose and high concentration of glucose in transgenic seed germination and post-germination. Under the treatment of mannoheptulose, a specific hexokinase inhibitor, both the wild-type and transgenic plants restored mannose-repressed seed germination. It suggests that LLA23 involving signaling is by way of hexokinase-mediated pathway. Low concentration of glucose (10 mM) can relieve mannose-repressed seed germination while 35S::LLA23 seeds and seedings exhibit hypersensitivity on the relief of the mannose-repressed germination and seedling development. At the molecular level, altered expression of stress-regulated genes was observed when 35S::LLA23 seedling was treated with high concentration of glucose. It reinforces the possibility that LLA23 mediates glucose signaling. The LLA23 gene contains a single intron and the identified promoter of LLA23 has potential regulatory elements in response to abscisic scid. The LLA23 has a transactivation domain as a fragment from amino acid 17 to 57 of the sequence. Chromatin immunoprecipitation assay revealed that LLA23 can bind DNA. The crystallization of LLA23 proteins is in progress. | en_US |
dc.description.tableofcontents | 目錄 中文摘要 1 英文摘要 3 第一章 擬南芥轉殖株百合LLA23蛋白質參與離層酸訊息傳遞和抗旱耐鹽之研究 壹、 前人研究 5 一、 環境逆境對植物的影響 5 二、 離層酸的功能及其訊息傳導路徑 9 三、 百合花藥/花粉之發育 12 四、 花粉基因和蛋白質 15 五、 ASR基因和蛋白質 19 貳、 材料與方法 23 一、 植物材料和處理 23 二、 轉基因植株之構築 23 三、 篩選轉殖基因植株 28 四、 北方墨點法 29 五、 西方墨點法 32 六、 種子萌發和休眠性試驗 36 七、 轉殖株之耐旱試驗 37 八、 轉殖株之耐鹽試驗 39 九、 離層酸含量之抽取與測定 39 十、 即時定量聚合酵素鏈鎖反應分析 40 叁、 結果 42 一、 35S::LLA23擬南芥轉殖株之選殖 42 二、 35S::LLA23轉殖株種子之萌發對離層酸較不敏感 43 三、 35S::LLA23轉殖株種子之休眠性試驗 44 四、 35S::LLA23轉殖株種子具抗鹽和抗滲透壓的特性 45 五、 35S::LLA23轉殖株具耐旱的特性 46 六、 35S::LLA23轉殖株在乾旱逆境下之氣孔反應 和離層酸濃度 48 七、 35S::LLA23轉殖株之蒸散作用 49 八、 35S::LLA23轉殖株具抗鹽的特性 50 九、 35S::LLA23轉殖株內逆境/離層酸相關基因之表現 50 肆、 討論 53 一、 百合LLA23蛋白質之保水功能 53 二、 百合LLA23蛋白質參與離層酸訊息傳遞路徑 55 伍、 參考文獻 57 陸、 圖表 73 第二章 擬南芥轉殖株百合LLA23蛋白質參與葡萄糖訊息傳遞之研究 壹、 前人研究 90 一、 葡萄糖之訊息傳導及功能 90 二、 葡萄糖對基因之調控 92 三、 葡萄糖與離層酸訊息傳遞之對話 94 四、 葡萄糖與其他賀爾蒙訊息傳遞之對話 96 貳、 材料與方法 99 一、 植物材料與種子處理 99 二、 種子萌發試驗 99 三、 即時定量聚合酵素鏈鎖反應分析 99 叁、 結果 100 一、 35S::LLA23轉殖株種子萌發和小苗生長對 高濃度葡萄糖較不敏感 100 二、 35S::LLA23轉殖株種子萌發和小苗生長對 甘露糖較不敏感 102 三、 35S::LLA23轉殖株種子萌發對低濃度葡萄糖解除 甘露糖之抑制現象具較高的敏感性 103 四、 35S::LLA23轉殖株相關基因之表現 105 肆、 討論 107 一、 百合LLA23參與葡萄糖之訊息傳遞路徑 107 二、 百合LLA23參與甘露糖經由六碳糖激酶中介的 訊息傳遞路徑 109 伍、 參考文獻 111 陸、 圖表 118 第三章 百合LLA23之基因組和蛋白質結構分析 壹、 前人研究 127 一、 ASR基因啟動子分析 127 二、 親水性蛋白質分子結構和功能 129 貳、 材料與方法 134 一、 百合LLA23基因與啟動子的找尋 134 二、 轉錄活化分析法 137 三、 染色質免疫沉澱分析 140 四、 百合LLA23蛋白質之結晶 141 五、 養晶前處理與結晶步驟 145 叁、 結果 147 一、 LLA23基因之選殖與插入子序列分析 147 二、 LLA23基因啟動子序列選殖及序列分析 148 三、 百合LLA23蛋白質之轉錄活化功能分析 149 四、 百合LLA23蛋白質之染色質免疫沉澱分析 150 五、 百合LLA23蛋白質之結晶 151 肆、 討論 154 伍、 參考文獻 156 陸、 圖表 162 | zh_TW |
dc.language.iso | en_US | zh_TW |
dc.publisher | 生物科技學研究所 | zh_TW |
dc.relation.uri | http://www.airitilibrary.com/Publication/alDetailedMesh1?DocID=U0005-2612200613381600 | en_US |
dc.subject | ABA | en_US |
dc.subject | 離層酸 | zh_TW |
dc.subject | drought | en_US |
dc.subject | salt | en_US |
dc.subject | 乾旱 | zh_TW |
dc.subject | 高鹽 | zh_TW |
dc.title | 擬南芥轉殖株百合LLA23蛋白參與離層酸和葡萄糖訊息傳遞及耐旱抗鹽特性 | zh_TW |
dc.title | A Lily LLA23 Involves in Abscisic Acid and Glucose Signaling Exhibiting Drought and Salt Resistance in Arabidopsis | en_US |
dc.type | Thesis and Dissertation | zh_TW |
item.openairetype | Thesis and Dissertation | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.languageiso639-1 | en_US | - |
item.grantfulltext | none | - |
item.fulltext | no fulltext | - |
item.cerifentitytype | Publications | - |
Appears in Collections: | 生物科技學研究所 |
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.