Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36142
標題: 愛玉子儲存蛋白、油體蛋白及似索馬甜蛋白的基因選殖與分析
Cloning and analyses of storage proteins, oil-body proteins and thaumatin-like proteins in Jelly fig achenes
作者: 蔡倩妞
Chua, Chian New
關鍵字: jelly fig;愛玉;MALDI-MS;storage proteins;oil bodies;caleosin;oleosin;thaumatin-like protein;質譜;儲存蛋白;油體;油體鈣蛋白;油體膜蛋白;似索馬甜蛋白
出版社: 生物科技學研究所
引用: (1) Lin, T. P.; Liu, C. C.; Chen, S. W.; Wang, W. Y. Purification and characterization of pectinmethylesterase from Ficus awkeotsang Makino achenes. Plant Physiol. 1989, 91, 1445-1453. (2) Berg, C. C. Classification and distribution of Ficus. Experientia 1989, 45, 605-611. (3) Weiblen, G. D. Phylogenetic relationships of functionally dioecious FICUS (Moraceae) based on ribosomal DNA sequences and morphology. Am. J. Bot. 2000, 87, 1342-1357. (4) Weiblen, G.; Spencer, H.; Flick, B. Seed set and wasp predation in dioecius Ficus variegata from an Australian wet tropical forest. Biotropica 1995, 27, 391-394. (5) Ganeshaiah, K. N.; Kathuria, P.; Shaanker, R. V. Evolution of style-length variability in figs and optimization of ovipositor length in their pollinator wasps: a coevolutionary model. J. Genet. 1995, 74, 25-39. (6) Grover, H.; Chopra, R. N. Observations on oviposition, nutrition and emergence of some fig insects. J. Indian Bot. Soc. 1971, 50, 107-115. (7) Kislev, M. E.; Hartmann, A.; Bar-Yosef, O. Early domesticated fig in the Jordan Valley. Science 2006, 312, 1372-1374. (8) Huang, Y. C.; Chen, W. P.; Shao, Y. P. A study on the mechanism of gelatinization of awkeo-jelly. China Hort. 1980, 23, 117-126. (9) Komae, K.; Misaki, A. Isolation and characterization of the gel-formation polygalacturonide from seeds of Ficus awkeotsang. Agric. Biol. Chem. 1989, 53, 1237-1245. (10) Gaffe, J.; Tiznado, M. E.; Handa, A. K. Characterization and functional expression of a ubiquitiously expressed tomato pectin methylesterase. Plant Physiol. 1997, 114, 1547-1556. (11) Ding, J. L. C.; Lee, T. T. T.; Wang, M. M. C.; Tai, S. S. K.; Tzen, J. T. C. Cloning and expression of an acidic pectin methylesterase from jelly fig (Ficus awkeotsang). J. Agric. Food Chem. 2000, 48, 3052-3057. (12) Ding, J. L. C.; Hsu, J. S. F.; Wang, M. M. C.; Tzen, J. T. C. Purification and glycosylation analysis of an acidic pectin methylesterase in jelly fig (Ficus awkeotsang) achenes. J. Agric. Food Chem. 2002, 50, 2920-2925. (13) Gainvors, A.; Frezier, V.; Lemaresquier, H.; Lequart, C.; Aigle, M.; Belarbi, A. Detection of polygalacturonase, pectin-lyase and pectin-esterase activities in a Saccharomyces cerevisiae strain. Yeast 1994, 10, 1311-1319. (14) Giovane, A.; Laratta, B.; Loiudice, R.; Quagliuolo, L.; Castaldo, D.; Servillo, L. Determination of residual pectin methylesterase activity in food products. Biotechnol. Appl. Biochem. 1996, 23, 181-184. (15) Li, Y. C.; Chang, C. T.; Hsiao, E. S. L.; Hsu, J. S. F.; Huang, J. W.; Tzen, J. T. C. Purification and characterization of an antifungal chitinase in jelly fig (Ficus awkeotsang) achenes. Plant Cell Physiol. 2003, 44, 1162-1167. (16) Li, Y. C.; Yang, Y. C.; Hsu, J. S. F.; Wu, D. J.; Wu, H. H.; Tzen, J. T. C. Cloning and immunolocalization of an antifungal chitinase in jelly fig (Ficus awkeotsang) achenes. Phytochem. 2005, 66, 879-886. (17) Shewry, P. R.; Casey, R., Seed proteins. Kluwer Academic Publishers: Dordrecht, The Netherlands, 1999. (18) Tzen, J. T. C.; Wang, M. M. C.; Tai, S. S. K.; Lee, T. T. T.; Peng, C. C. The abundant proteins in sesame seed: storage proteins in protein bodies and oleosins in oil bodies. Adv. Plant Physiol. 2003, 6, 93-105 (19) Osborne, T. B., The Vegetable Proteins. Monographs in Biochemistry. Longmans, Green and Co: London, 1924. (20) Danielsson, C. E. Seed globulins of the Gramineae and Leguminoseae. Biochem. J. 1949, 44, 387-400. (21) Youle, R. J.; Huang, A. H. C. Occurrence of low molecular weight and high cysteine containing albumin storage proteins in oilseeds of diverse species. Amer. J. Bot. 1981, 68, 44-48. (22) Casey, R.; Domoney, C.; Ellis, N. Legume storage proteins. Plant Mol. Cell. Biol. 1986, 3, 1-95. (23) Herman, E. M.; Larkins, B. A. Protein storage bodies and vacuoles. Plant Cell 1999, 11, 601-614. (24) Scott, M. P.; Jung, R.; Muntz, K.; Nielsen, N. C. A protease responsible for post-translational cleavage of a conserved Asn-Gly linkage in glycinin, the major seed storage protein of soybean. Proc. Natl. Acad. Sci. U. S. A. 1992, 89, 658-662. (25) Hara-Nishimura, I. Vacuolar processing enzyme responsible for maturation of vacuolar proteins. Seikagaku 1995, 67, 372-377. (26) Derbyshire, E.; Wright, D. J.; Boulter, D. Legumin and vicilin, storage proteins of legume seeds. Phytochem. 1976, 15, 3-24. (27) Shewry, P. R. Plant storage proteins. Biol. Rev. Camb. Philos. Soc. 1995, 70, 375-426. (28) Ampe, C.; Van Damme, J.; de Castro, L. A.; Sampaio, M. J.; Van Montagu, M.; Vandekerckhove, J. The amino-acid sequence of the 2S sulphur-rich proteins from seeds of Brazil nut (Bertholletia excelsa H.B.K.). Eur. J. Biochem. 1986, 159, 597-604. (29) Ericson, M. L.; Rodin, J.; Lenman, M.; Glimelius, K.; Josefsson, L. G.; Rask, L. Structure of the rapeseed 1.7 S storage protein, napin, and its precursor. J. Biol. Chem. 1986, 261, 14576-14581. (30) Krebbers, E.; Herdies, L.; De Clercq, A.; Seurinck, J.; Leemans, J.; Van Damme, J.; Segura, M.; Gheysen, G.; Van Montagu, M.; Vandekerckhove, J. Determination of the processing sites of an Arabidopsis 2S albumin and characterization of the complete gene family. Plant Physiol. 1988, 87, 859-866. (31) Altenbach, S. B.; Pearson, K. W.; Leung, F. W.; Sun, S. S. M. Cloning and sequence analysis of a cDNA encoding a Brazil nut protein exceptionally rich in methionine. Plant Mol. Biol. 1987, 8, 239-250. (32) Crouch, M. L.; Tenbarge, K. M.; Simon, A. E.; Ferl, R. cDNA clones for Brassica napus seed storage proteins: evidence from nucleotide sequence analysis that both subunits of napin are cleaved from a precursor polypeptide. J. Mol. Appl. Genet. 1983, 2, 273-283. (33) Sun, S. S.; Altenbach, S. B.; Leung, F. W. Properties, biosynthesis and processing of a sulfur-rich protein in Brazil nut (Bertholletia excelsa H.B.K.). Eur. J. Biochem. 1987, 162, 477-483. (34) Hara-Hishimura, I.; Takeuchi, Y.; Inoue, K.; Nishimura, M. Vesicle transport and processing of the precursor to 2S albumin in pumpkin. Plant J. 1993, 4, 793-800. (35) Huang, A. H. C. Oleosins and oil bodies in seeds and other organs. Plant Physiol. 1996, 110, 1055-1061. (36) Murphy, D. J. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog. Lipid Res. 2001, 40, 325-438. (37) Napier, J. A.; Stobart, A. K.; Shewry, P. R. The structure and biogenesis of plant oil bodies: the role of the ER membrane and the oleosin class of proteins. Plant Mol. Biol. 1996, 31, 945-956. (38) Tai, S. S. K.; Lee, T. T. T.; Tsai, C. C. Y.; Yiu, T. J.; Tzen, J. T. C. Expression pattern and deposition of three storage proteins, 11S globulin, 2S albumin, and 7S globulin in maturing sesame seeds. Plant Physiol. Biochem. 2001, 39, 981-992. (39) Tzen, J. T. C.; Cao, Y. Z.; Laurent, P.; Ratnayake, C.; Huang, A. H. C. Lipids, Proteins, and Structure of Seed Oil Bodies from Diverse Species. Plant Physiol. 1993, 101, 267-276. (40) Tzen, J. T. C.; Huang, A. H. Surface structure and properties of plant seed oil bodies. J. Cell Biol. 1992, 117, 327-335. (41) Tzen, J. T. C.; Peng, C. C.; Cheng, D. J.; Chen, E. C. F.; Chiu, J. M. H. A new method for seed oil body purification and examination of oil body integrity following germination. J. Biochem. (Tokyo) 1997, 121, 762-768. (42) Chen, E. C. F.; Tai, S. S. K.; Peng, C. C.; Tzen, J. T. C. Identification of three novel unique proteins in seed oil bodies of sesame. Plant Cell Physiol. 1998, 39, 935-941. (43) Chen, J. C. F.; Tsai, C. C. K.; Tzen, J. T. C. Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds. Plant Cell Physiol. 1999, 40, 1079-1086. (44) Naested, H.; Frandsen, G. I.; Jauh, G. Y.; Hernandez-Pinzon, I.; Nielsen, H. B.; Murphy, D. J.; Rogers, J. C.; Mundy, J. Caleosins: Ca2+-binding proteins associated with lipid bodies. Plant Mol. Biol. 2000, 44, 463-476. (45) Lin, L. J.; Tai, S. S. K.; Peng, C. C.; Tzen, J. T. C. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies. Plant Physiol. 2002, 128, 1200-1211. (46) Kim, H. U.; Hsieh, K.; Ratnayake, C.; Huang, A. H. C. A novel group of oleosins is present inside the pollen of Arabidopsis. J. Biol. Chem. 2002, 277, 22677-22684. (47) Tai, S. S. K.; Chen, M. C. M.; Peng, C. C.; Tzen, J. T. C. Gene family of oleosin isoforms and their structural stabilization in sesame seed oil bodies. Biosci. Biotechnol. Biochem. 2002, 66, 2146-2153. (48) Tzen, J. T. C.; Lai, Y. K.; Chan, K. L.; Huang, A. H. C. Oleosin isoforms of high and low molecular weights are present in the oil bodies of diverse seed species. Plant Physiol. 1990, 94, 1282-1289. (49) Tzen, J. T. C.; Chuang, R. L. C.; Chen, J. C. F.; Wu, L. S. H. Coexistence of both oleosin isoforms on the surface of seed oil bodies and their individual stabilization to the organelles. J. Biochem. 1998, 123, 319-324. (50) Wu, L. S. H.; Hong, G. H. H.; Hou, R. F.; Tzen, J. T. C. Classification of the single oleosin isoform and characterization of seed oil bodies in gymnosperms. . Plant Cell Physiol. 1999, 40, 326-334. (51) Chen, J. C. F.; Tzen, J. T. C. An in vitro system to examine the effective phospholipids and structural domain for protein targeting to seed oil bodies. Plant Cell Physiol. 2001, 42, 1245-1252. (52) Frandsen, G.; Muller-Uri, F.; Nielsen, M.; Mundy, J.; Skriver, K. Novel plant Ca(2+)-binding protein expressed in response to abscisic acid and osmotic stress. J. Biol. Chem. 1996, 271, 343-348. (53) Frandsen, G. I.; Mundy, J.; Tzen, J. T. C. Oil bodies and their associated proteins, oleosin and caleosin. Physiol. Plant 2001, 112, 301-307. (54) Lin, L. J.; Liao, P. C.; Yang, H. H.; Tzen, J. T. C. Determination and analyses of the N-termini of oil-body proteins, steroleosin, caleosin and oleosin. Plant Physiol. Biochem. 2005, 43, 770-776. (55) Branden, C. I. Relation between structure and function of α/β protein. Q. Rev. Biophys. 1980, 13, 317-338. (56) Legrand, M.; Kauffmann, S.; Geoffroy, P.; Fritig, B. Biological function of pathogenesis-related proteins: Four tobacco pathogenesis-related proteins are chitinases. Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 6750-6754. (57) Niki, T.; Mitsuhara, I.; S., S.; Ohtsubo, N.; Ohashi, Y. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves Plant Cell Physiol. 1998, 39, 500-507. (58) Van Loon, L. C.; Van Strien, E. A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 1999, 55, 85-97. (59) Van Loon, L. C.; Van Kammen, A. Polyacrylamide disc electrophoresis of the soluble leaf proteins from Nicotiana tabacum var. "Samsun" and "Samsun NN". II. Changes in protein constitution after infection with tobacco mosaic virus. Virology 1970, 40, 190-211. (60) Van Loon, L. C. Induced resistance in plants and the role of pathogenesis-related proteins. Eur. J. Plant Pathol. 1997, 103, 753-765. (61) Gorlach, J.; Volrath, S.; Knauf-Beiter, G.; Hengy, G.; Beckhove, U.; Kogel, K. H.; Oostendorp, M.; Staub, T.; Ward, E.; Kessmann, H.; Ryals, J. Benzothiadiazole, a novel class of inducers of systemic acquired resistance, activates gene expression and disease resistance in wheat. Plant Cell 1996, 8, 629-643. (62) Okushima, Y.; Koizumi, N.; Kusano, T.; Sano, H. Secreted proteins of tobacco cultured BY2 cells: identification of a new member of pathogenesis-related proteins. Plant Mol. Biol. 2000, 42, 479-488. (63) Christensen, A. B.; Cho, B. H.; Naesby, M.; Gregersen, P. L.; Brandt, J.; Madriz-Ordenana, K.; Collinge, D. B.; Thordal-Christensen, H. The molecular characterization of two barley proteins establishes the novel PR-17 family of pathogenesis-related proteins. Mol. Plant Pathol. 2002, 3 135-144. (64) Neuhaus, J. M., Plant Chitinases. CRC Press: Boca Raton, 1999; p 77-98. (65) Gomez, L.; Allona, I.; Casado, R.; Aragoncillo, C. Seed chitinases. Seed Sci. Res. 2002, 12, 217-230. (66) Neuhaus, J. M.; Sticher, L.; Meins, F., Jr.; Boller, T. A short C-terminal sequence is necessary and sufficient for the targeting of chitinases to the plant vacuole. Proc. Natl. Acad. Sci. U. S. A. 1991, 88 (22), 10362-10366. (67) Berglund, L.; Brunstedt, J.; Nielsen, K. K.; Chen, Z.; Mikkelsen, J. D.; Marcker, K. A. A proline-rich chitinase from Beta vulgaris. Plant Mol. Biol. 1995, 27, 211-216. (68) Truong, N. H.; Park, S. M.; Nishizawa, Y.; Watanabe, T.; Sasaki, T.; Itoh, Y. Structure, heterologous expression, and properties of rice (Oryza sativa L.) family 19 chitinases. Biosci. Biotechnol. Biochem. 2003, 67, 1063-1070. (69) Singh, N. K.; Handa, A. K.; Hasegawa, P. M.; Bressan, R. A. Proteins Associated with Adaptation of Cultured Tobacco Cells to NaCl. Plant Physiol. 1985, 79, 126-137. (70) Roberts, W.; Selitrennikoff, C. P. Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J. Gen. Microbiol. 1990, 136, 1771-1778. (71) Pressey, R. Two isoforms of NP24: a thaumatin-like protein in tomato fruit. Phytochem. 1997, 44, 1241-1245. (72) Hon, W. C.; Griffith, M.; Mlynarz, A.; Kwok, Y. C.; Yang, D. S. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol. 1995, 109, 879-889. (73) Grenier, J.; Potvin, C.; Trudel, J.; Asselin, A. Some thaumatin-like proteins hydrolyse polymeric beta-1,3-glucans. Plant J. 1999, 19, 473-480. (74) Trudel, J.; Grenier, J.; Potvin, C.; Asselin, A. Several thaumatin-like proteins bind to beta-1,3-glucans. Plant Physiol. 1998, 118, 1431-1438. references (1) Robinson, D. G.; Oliviusson, P.; Hinz, G. Protein sorting to the storage vacuoles of plants: a critical appraisal. Traffic 2005, 6, 615-625. (2) Osborne, T. B. The vegetable protein; Longmans, Green & Co.: London, 1924. 4 (3) Shewry, P. R. Plant storage protein. Biol. Rev. 1995, 70, 375-426. 5 (4) Vasil, I. K.; Anderson, O. D. Genetic engineering of wheat gluten. Trends Plant Sci. 1997, 2, 292-297. (5) Horstmann, C. Specific subunit pairs of legumin from Vicia faba. Phytochem. 1983, 22, 1861-1866. (6) Jung, R.; Scott, M. P.; Nam, Y. W.; Beaman, T. W.; Bassuner, R.; Saalbach, I.; Muntz, K.; Nielsen, N. C. The role of proteolysis in the processing and assembly of 11S seed globulins. Plant Cell 1998, 10, 343-357. (7) Staswick, P. E.; Hermodson, M. A.; Nielson, N. C. Identification of the cysteines which link the acidic and basic components of the glycinin subunits. J. Bio. Chem. 1984, 259, 13431-13435. (8) Tai, S. S. K.; Lee, T. T. T.; Tsai, C. C. Y.; Yiu, T. J.; Tzen, J. T. C. Expression pattern and deposition of three storage proteins, 11S globulin, 2S albumin and 7S globulin in maturing sesame seeds. Plant Physiol. Biochem. 2001, 39, 981-992. (9) Wang, M. M. C.; Tzen, J. T. C. Achene proteins in jelly fig (Ficus awkeotasang) and their potential biotechnical application. Adv. Plant Physiol. 2005, 8, 191-200. (10) Peng, C. C.; Hsiao, E. S. L.; Ding, J. L.C.; Tzen, J. T. C. Functional expression in Pichia pastoris of an acidic pectin methylesterase from jelly fig (Ficus awkeotsang). J. Agric. Food Chem. 2005, 52, 5612-5616. (11) Li, Y. C.; Yang, Y. C.; Hsu, J. S. F.; Wu, D. J.; Wu, H. H.; Tzen, J. T. C. Cloning and immunolocalization of an antifungal chitinase in jelly fig (Ficus awkeotsang) achenes. Phytochem. 2005, 66, 879-886. (12) Adams, W. R.; Huang, S.; Kriz, A. L.; Luethy, M. H. Matrix-assisted laser desorption ionization time-of-flight mass spectrometry analysis of zeins in mature maize kernels J. Agric. Food Chem. 2004, 52, 1842-1849. (13) Chassaigne, H.; Nørgaard, J. V.; van Hengel, A. J. Proteomics-based approach to detect and identify major allergens in processed peanuts by capillary LC-Q-TOF (MS/MS). J Agric Food Chem. 2007, 55, 4461-4473. (14) Lisacek, F. C.; Traini, M. D.; Sexton, D.; Harry, J. L.; Wilkins, M. R. Strategy for protein isoform identification from expressed sequence tags and its application to peptide mass fingerprinting. Proteomics 2001, 1, 186-193. (15) Mooney, B. P.; Thelen, J. J. High-throughput peptide mass fingerprinting of soybean seed proteins: automated workflow and utility of UniGene expressed sequence tag databases for protein identification. Phytochem. 2004, 65, 1733-1744. (16) Wilkins, T. A.; Smart, L. B. Isolation of RNA from plant tissue. In A Laboratory Guide to RNA; ed. Krieg; P. A., Wiley-Liss Inc.; 1996, 2, 21-41. (17) Altschul, S. F.; Madden, T. L.; Schäffer, A. A.; Zhang, J.; Zhang, Z.; Miller, W.; Lipman, D. J. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997, 25, 3389-3402. (18) Zhang, J.; Madden, T. L. PowerBLAST: A new network BLAST application for interactive or automated sequence analysis and annotation. Genome Res. 1997, 7, 649-656. (19) Emanuelsson, O.; Brunak, S.; von Heijne, G.; Nielsen, H. Locating proteins in the cell using TargetP, SignalP, and related tools. Nat. Protoc. 2007, 2, 953-971. (20) Jung, R.; Nam, Y.W.; Saalbach, I. I.; Müntz, K.; Nielsen, N.C. Role of the sulfhydryl redox state and disulfide bonds in processing and assembly of 11S seed globulins. Plant Cell 1997, 9, 2037-2050. (21) Tai, S. S. K.; Wu, L. S. H.; Chen, E. C. F.; Tzen, J. T. C. Molecular cloning of 11S globulin and 2S albumin, the two major seed storage proteins in sesame. J. Agric. Food Chem. 1999, 47, 4932-4938. (22) Thompson, J. D.; Higgins, D. G.; Gibson, T. J. Improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res. 1994, 22, 4673-4680. (23) Ding, J. L. C.; Lee, T. T. T.; Wang, M. M. C.; Tai, S. S. K.; Tzen, J. T. C. Cloning and expression of an acidic pectin methylesterase from jelly fig (Ficus awkeotsang). J. Agric. Food Chem. 2000, 48, 3052-3057. (24) Chua, A. C. N.; Chou, W. M.; Chyan, C. L.; Tzen, J. T. C. Purification, Cloning, and identification of two thaumatin-like protein isoforms in jelly fig (Ficus awkeotsang) achenes. J. Agric. Food Chem. 2007, 55, 7602-7608. (25) Hsiao, E. S. L.; Lin, L. J.; Li, F. Y.; Wang, M. M. C.; Liao, M. Y.; Tzen, J. T. C. Gene families encoding isoforms of two major sesame seed storage proteins, 11S globulin and 2S albumin. J. Agric. Food Chem. 2006, 54, 9544-9550. (26) Nordlee, J. A.; Taylor, S. L.; Townsend, J. A.; Thomas, L. A.; Bush, R. K. Identification of a Brazil nut allergen in transgenic soybeans. New Eng. J. Med., 1996, 334, 688-692. (27) Pastorello, E. A.; Varin, E.; Farioli, L.; Pravettoni, V.; Ortolani, C.; Trambaioli, C.; Fortunato, D.; Giuffrida, M. G.; Rivolta, F.; Robino, A.; Calamari , A. M.; Lacava, L.; Conti, A. The major allergen of sesame seeds (Sesamum indicum) is a 2S albumin. J. Chromatogr. B Biomed. Sci. Appl. 2001, 756, 85-93. (28) Murtagh, G. J.; Archer, D. B.; Dumoulin, M.; Ridout, S.; Matthews, S.; Arshad, S. H.; Alcocer, M. J. C. In vitro stability and immunoreactivity of the native and recombinant plant food 2S albumins Ber e 1 and SFA-8. Clin. Exp. Allergy. 2003, 33, 1147-1152. (29) Wolff, N.; Cogan, U.; Admon, A.; Dalal, I.; Katz, Y.; Hodos, N.; Karin, N.; Yannai, S. Allergy to sesame in humans is associated primarily with IgE antibody to a 14 kDa 2S albumin precursor. Food Chem. Toxicol. 2003, 41, 1165-1174. REFERENCES (1) Yatsu, L. Y.; Jacks, T. J. Spherosome membranes: half unit-membranes. Plant Physiol. 1972, 49, 937-943. (2) Huang, A. H. C. Oleosins and oil bodies in seeds and other organs. Plant Physiol. 1996, 110, 1055-1061. (3) Murphy, D. J. The biogenesis and functions of lipid bodies in animals, plants and microorganisms. Prog. Lipid Res. 2001, 40, 325-438. (4) Napier, J. A.; Stobart, A. K.; Shewry, P. R. The structure and biogenesis of plant oil bodies: the role of the ER membrane and the oleosin class of proteins. Plant Mol. Biol. 1996, 31, 945-956. (5) Tzen, J. T. C.; Wang, M. M. C.; Tai, S. S. K.; Lee, T. T. T.; Peng, C. C. The abundant proteins in sesame seed: storage proteins in protein bodies and oleosins in oil bodies. . Adv. Plant Physiol. 2003, 6, 93-105. (6) Chen, J. C. F.; Tsai, C. C. Y.; Tzen, J. T. C. Cloning and secondary structure analysis of caleosin, a unique calcium-binding protein in oil bodies of plant seeds. Plant Cell Physiol. 1999, 40, 1079-1086. (7) Lin, L. J.; Tai, S. S. K.; Peng, C. C.; Tzen, J. T. C. Steroleosin, a sterol-binding dehydrogenase in seed oil bodies. Plant Physiol. 2002, 128, 1200-1211. (8) Lin, L. J.; Tzen, J. T. C. Two distinct steroleosins are present in seed oil bodies. Plant Physiol. Biochem. 2004, 42, 601-608. (9) Tzen, J. T. C.; Chuang, R. L. C.; Chen, J. C. F.; Wu, L. S. H. Coexistence of both oleosin isoforms on the surface of seed oil bodies and their individual stabilization to the organelles. J. Biochem. 1998, 123, 319-324. (10) Tai, S. S. K.; Chen, M. C. M.; Peng, C. C.; Tzen, J. T. C. Gene family of oleosin isoforms and their structural stabilization in sesame seed oil bodies. Biosci. Biotechnol. Biochem. 2002, 66, 2146-2153. (11) Lin, T. P.; Liu, C. C.; Chen, S. W.; Wang, W. Y. Purification and characterization of pectinmethylesterase from Ficus awkeotsang Makino achenes. Plant Physiol. 1989, 91, 1445-1453. (12) Ding, J. L. C.; Lee, T. T. T.; Wang, M. M. C.; Tai, S. S. K.; Tzen, J. T. C. Cloning and expression of an acidic pectin methylesterase from jelly fig (Ficus awkeotsang). J. Agric. Food Chem. 2000, 48, 3052-3057. (13) Ding, J. L. C.; Hsu, J. S. F.; Wang, M. M. C.; Tzen, J. T. C. Purification and glycosylation analysis of an acidic pectin methylesterase in jelly fig (Ficus awkeotsang) achenes. J. Agric. Food Chem. 2002, 50, 2920-2925. (14) Peng, C. C.; Hsiao, E. S. L.; Ding, J. L. C.; Tzen, J. T. C. Functional expression in pichia pastoris of an acidic pectin methylesterase from jelly fig (Ficus awkeotsang). J. Agric. Food Chem. 2005, 53, 5612-5616. (15) Li, Y. C.; Chang, C. T.; Hsiao, E. S. L.; Hsu, J. S. F.; Huang, J. W.; Tzen, J. T. C. Purification and characterization of an antifungal chitinase in jelly fig (Ficus awkeotsang) achenes. Plant Cell Physiol. 2003, 44, 1162-1167. (16) Li, Y. C.; Yang, Y. C.; Hsu, J. S. F.; Wu, D. J.; Wu, H. H.; Tzen, J. T. C. Cloning and immunolocalization of an antifungal chitinase in jelly fig (Ficus awkeotsang) achenes. Phytochemistry 2005, 66, 879-886. (17) Chua, A. C. N.; Chou, W. M.; Chyan, C. L.; Tzen, J. T. C. Purification, cloning, and identification of two thaumatin-like protein isoforms in jelly fig (Ficus awkeotsang) achenes. J. Agric. Food Chem. 2007, 55, 7602-7608. (18) Wang, M. M. C.; Tzen, J. T. C. Achene proteins in jelly fig (Ficus awkeotasang) and their potential biotechnical application. Adv. Plant Physiol. 2005, 8, 191-200. (19) Tzen, J. T. C.; Peng, C. C.; Cheng, D. J.; Chen, E. C. F.; Chiu, J. M. H. A new method for seed oil body purification and examination of oil body integrity following germination. J. Biochem. (Tokyo) 1997, 121, 762-768. (20) Tzen, J. T. C.; Cao, Y. Z.; Laurent, P.; Ratnayake, C.; Huang, A. H. C. Lipids, proteins, and structure of seed oil bodies from diverse species. Plant Physiol. 1993, 101, 267-276. (21) Namiki, M. The chemistry and physiological functions of sesame. Food Rev. Int. 1995, 11 281-329. (22) Burdge, G. C.; Calder, P. C. Conversion of alpha-linolenic acid to longer-chain polyunsaturated fatty acids in human adults. Reprod. Nutr. Dev. 2005, 45, 581-597. (23) Wijendran, V.; Hayes, K. C. Dietary n-6 and n-3 fatty acid balance and cardiovascular health. Annu. Rev. Nutr. 2004, 24, 597-615. (24) Letawe, C.; Boone, M.; Pierard, G. E. Digital image analysis of the effect of topically applied linoleic acid on acne microcomedones. Clin. Exp. Dermatol. 1998, 23, 56-58. (25) Darmstadt, G. L.; Mao-Qiang, M.; Chi, E.; Saha, S. K.; Ziboh, V. A.; Black, R. E.; Santosham, M.; Elias, P. M. Impact of topical oils on the skin barrier: possible implications for neonatal health in developing countries. Acta Paediatr. 2002, 91, 546-554. (26) AOCS official method Ce-1b-89; Champaign IL, 1992. (27) AOCS Official Method Ce 1b-89, 5th ed. ; Champaign, IL, 1998. (28) Wilkins, T. A.; Smart, L. B., In Isolation of RNA from plant tissue, P.A. Krieg, Ed. Wiley-Liss Inc.: New York, 1996; Vol. 2, pp 21-41. REFERENCES (1) Huang, Y. C.; Chen, W. P.; Shao, Y. P. A study on the mechanism of gelatinization of awkeo-jelly. China Hort. 1980, 23, 117-126. (2) Lin, T. P.; Liu, C. C.; Chen, S. W.; Wang, W. Y. Purification and characterization of pectinmethylesterase from Ficus awkeotsang Makino achenes. Plant Physiol. 1989, 91 (4), 1445-1453. (3) Ding, J. L. C.; Lee, T. T. T.; Wang, M. M. C.; Tai, S. S. K.; Tzen, J. T. C. Cloning and expression of an acidic pectin methylesterase from jelly fig (Ficus awkeotsang). J. Agric. Food Chem. 2000, 48 (7), 3052-3057. (4) Peng, C. C.; Hsiao, E. S. L.; Ding, J. L. C.; Tzen, J. T. C. Functional expression in pichia pastoris of an acidic pectin methylesterase from jelly fig (Ficus awkeotsang). J. Agric. Food Chem. 2005, 53 (14), 5612-5616. (5) Li, Y. C.; Chang, C. T.; Hsiao, E. S. L.; Hsu, J. S. F.; Huang, J. W.; Tzen, J. T. C. Purification and characterization of an antifungal chitinase in jelly fig (Ficus awkeotsang) achenes. Plant Cell Physiol. 2003, 44 (11), 1162-1167. (6) Li, Y. C.; Yang, Y. C.; Hsu, J. S. F.; Wu, D. J.; Wu, H. H.; Tzen, J. T. C. Cloning and immunolocalization of an antifungal chitinase in jelly fig (Ficus awkeotsang) achenes. Phytochem. 2005, 66 (8), 879-886. (7) Van Loon, L. C.; Van Strien, E. A. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 1999, 55, 85-97. (8) Abad, L. R.; D''Urzo, M. P.; Dong, L.; Narasimhan, M. L.; Reuveni, M.; Jian, K. Z.; Xiaomu, N.; Singh, N. K.; Hasegawa, P. M.; Bressan, R. A. Antifungal activity of tobacco osmotin has specificity and involves plasma membrane permeabilization Plant Sci. 1996, 118, 11-23. (9) Hejgaard, J.; Jacobsen, S.; Svendsen, I. Two antifungal thaumatin-like proteins from barley grain. FEBS Lett. 1991, 291 (1), 127-131. (10) Huynh, Q. K.; Borgmeyer, J. R.; Zobel, J. F. Isolation and characterization of a 22 kDa protein with antifungal properties from maize seeds. Biochem. Biophys. Res. Commun. 1992, 182 (1), 1-5. (11) Malehorn, D. E.; Borgmeyer, J. R.; Smith, C. E.; Shah, D. M. Characterization and expression of an antifungal zeamatin-like protein (Zlp) gene from Zea mays. Plant Physiol. 1994, 106 (4), 1471-1481. (12) Vigers, A. J.; Roberts, W. K.; Selitrennikoff, C. P. A new family of plant antifungal proteins. Mol. Plant Microbe. Interact. 1991, 4 (4), 315-323. (13) Woloshuk, C. P.; Meulenhoff, J. S.; Sela-Buurlage, M.; van den Elzen, P. J.; Cornelissen, B. J. Pathogen-induced proteins with inhibitory activity toward Phytophthora infestans. Plant Cell 1991, 3 (6), 619-628. (14) van der Wel, H.; Loeve, K. Isolation and characterization of thaumatin I and II, the sweet-tasting proteins from Thaumatococcus daniellii Benth. Eur. J. Biochem. 1972, 31 (2), 221-225. (15) Roberts, W.; Selitrennikoff, C. P. Zeamatin, an antifungal protein from maize with membrane-permeabilizing activity. J. Gen. Microbiol. 1990, 136, 1771-1778. (16) Neale, A. D.; Wahleithner, J. A.; Lund, M.; Bonnett, H. T.; Kelly, A.; Meeks-Wagner, D. R.; Peacock, W. J.; Dennis, E. S. Chitinase, beta-1,3-glucanase, osmotin, and extensin are expressed in tobacco explants during flower formation. Plant Cell 1990, 2 (7), 673-684. (17) Pressey, R. Two isoforms of NP24: a thaumatin-like protein in tomato fruit. Phytochem. 1997, 44 (7), 1241-1245. (18) Hon, W. C.; Griffith, M.; Mlynarz, A.; Kwok, Y. C.; Yang, D. S. Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiol. 1995, 109 (3), 879-889. (19) Grenier, J.; Potvin, C.; Trudel, J.; Asselin, A. Some thaumatin-like proteins hydrolyse polymeric beta-1,3-glucans. Plant J. 1999, 19 (4), 473-480. (20) Trudel, J.; Grenier, J.; Potvin, C.; Asselin, A. Several thaumatin-like proteins bind to beta-1,3-glucans. Plant Physiol. 1998, 118 (4), 1431-1438. (21) Ding, J. L. C.; Hsu, J. S. F.; Wang, M. M. C.; Tzen, J. T. C. Purification and glycosylation analysis of an acidic pectin methylesterase in jelly fig (Ficus awkeotsang) achenes. J. Agric. Food Chem. 2002, 50 (10), 2920-5. (22) Laemmli, U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970, 227 (5259), 680-685. (23) Wilkins, T. A.; Smart, L. B. Isolation of RNA from plant tissue. In A Laboratory Guide to RNA; Krieg, P. A., Ed.; Wiley-Liss: New York, 1996; Vol. 2, pp. 21-41. (24) Tzen, J. T. C.; Chuang, R. L. C.; Chen, J. C. F.; Wu, L. S. H. Coexistence of both oleosin isoforms on the surface of seed oil bodies and their individual stabilization to the organelles. J. Biochem. (Tokyo) 1998, 123 (2), 318-323. (25) Polson, A. Isolation of IgY from the yolks of eggs by a chloroform polyethylene glycol procedure. Immunol. Invest. 1990, 19 (3), 253-258. (26) Banik, M.; Bourgault, R.; Bewley, J. D. Endo-beta-mannanase is present in an inactive form in ripening tomato fruits of the cultivar Walter. J. Exp. Bot. 2001, 52 (354), 105-111. (27) Chen, B. Y.; Wang, Y.; Janes, H. W. ADP-glucose pyrophosphorylase is localized to both the cytoplasm and plastids in developing pericarp of tomato fruit. Plant Physiol. 1998, 116 (1), 101-106. (28) Chung, M. C.; Chou, S. J.; Kuang, L. Y.; Charng, Y. Y.; Yang, S. F. Subcellular localization of 1-aminocyclopropane-1-carboxylic acid oxidase in apple fruit. Plant Cell Physiol. 2002, 43 (5), 549-554. (29) Hood, E. E.; Murphy, J. M.; Pendleton, R. C. Molecular characterization of maize extensin expression. Plant Mol. Biol. 1993, 23 (4), 685-695. (30) Jones, B.; Frasse, P.; Olmos, E.; Zegzouti, H.; Li, Z. G.; Latche, A.; Pech, J. C.; Bouzayen, M. Down-regulation of DR12, an auxin-response-factor homolog, in the tomato results in a pleiotropic phenotype including dark green and blotchy ripening fruit. Plant J. 2002, 32 (4), 603-613. (31) Peters, J. L.; Szell, M.; Kendrick, R. E. The expression of light-regulated genes in the high-pigment-1 mutant of tomato. Plant Physiol. 1998, 117 (3), 797-807. (32) Koiwa, H.; Kato, H.; Nakatsu, T.; Oda, J.; Yamada, Y.; Sato, F. Crystal structure of tobacco PR-5d protein at 1.8 A resolution reveals a conserved acidic cleft structure in antifungal thaumatin-like proteins. J. Mol. Biol. 1999, 286 (4), 1137-1145. (33) Cusack, M.; Pierpoint, W. S. Similarities between sweet protein thaumatin and a pathogenesis-related protein from tobacco. Phytochem. 1988, 27, 3817-3821. (34) Fils-Lycaon, B. R.; Wiersma, P. A.; Eastwell, K. C.; Sautiere, P. A cherry protein and its gene, abundantly expressed in ripening fruit, have been identified as thaumatin-like. Plant Physiol. 1996, 111 (1), 269-273. (35) Melchers, L. S.; Sela-Buurlage, M. B.; Vloemans, S. A.; Woloshuk, C. P.; Van Roekel, J. S.; Pen, J.; van den Elzen, P. J.; Cornelissen, B. J. Extracellular targeting of the vacuolar tobacco proteins AP24, chitinase and beta-1,3-glucanase in transgenic plants. Plant Mol. Biol. 1993, 21 (4), 583-593. (36) Sato, F.; Koiwa, H.; Sakai, Y.; Kato, N.; Yamada, Y. Synthesis and secretion of tobacco neutral PR-5 protein by transgenic tobacco and yeast. Biochem. Biophys. Res. Commun. 1995, 211 (3), 909-913. (37) Jung, Y. C.; Lee, H. J.; Yum, S. S.; Soh, W. Y.; Cho, D. Y.; Auh, C. K.; Lee, T. K.; Soh, H. C.; Kim, Y. S.; Lee, S. C. Drought-inducible-but ABA - independent-thaumatin-like protein from carrot (Daucus carota L.). Plant Cell Rep. 2005, 24 (6), 366-73.
摘要: 
愛玉是生長在台灣山區特有的木質籐本植物。愛玉子加水搓揉之後所凝結出來的愛玉凍是市面上頗受歡迎的飲料。目前有兩種從愛玉凍中萃取出來含量豐富的胞外蛋白已被確認為果膠甲基酯酶和具抗菌活性的幾丁質分解酶, 其相關基因已被選殖出來。去除愛玉凍之後所殘留下來的愛玉子,其種子細胞則是由蛋白質體及油體所組成。
在愛玉蛋白質體的部份,有兩種儲存蛋白,已被鑑定出來的有六個11S球蛋白異構體及兩個2S白蛋白異構體。對應這八個儲存蛋白的基因全長序列已從愛玉基因庫進行EST定序分析而獲得,並利用質譜分析確認聚丙烯胺膠體上的儲存蛋白。在愛玉儲存蛋白的胺基酸成分分析可以得知這兩個2S異構體皆含有豐富的硫,另外一個2S則含有較多的色胺酸。
在愛玉油體的部份,從愛玉子中純化出來的油體,主要為中性脂質(>90% 三酸甘油脂及 ~5% 二酸甘油酯)。從中性脂質所分離出來的為高度不飽和脂肪酸(62.65% α-亞麻油酸, 18.24% 亞麻仁油酸, 和 10.62% 油酸)。由於油體的穩定性主要是由油體表面蛋白質所提供負電斥力及立體障礙來保護油體。因此利用芝麻油體蛋白質的抗體來辨識愛玉油體的蛋白質, 可偵測到兩個油體膜蛋白異構體及一個油體鈣蛋白。以質譜分析三個全長的基因所對應到的油體蛋白質確實與免疫分析結果一致。
從愛玉凍中所萃取出來含量為第三豐富的胞外蛋白質,經由40%硫酸銨沉澱及Mono Q管柱純化,所得到的蛋白質在不含還原劑β-mercaptoethanol的條件下,經由聚丙烯醯胺膠體電泳分析,其分子量為20 kDa。當經過還原劑的處理,此蛋白質在聚丙烯醯胺膠體上則會分離成20 kDa 及27 kDa的片段。這兩種推斷為似索馬甜蛋白的基因,已由聚合酶鏈鎖反應增殖所獲得,並將基因轉入大腸桿菌中表現以製備抗體。利用免疫學偵測方式及質譜鑑定分析,已確定其為兩個似索馬甜蛋白異構體。

Jelly fig (Ficus awkeotsang Makino) is a unique woody vine growing in the mountain areas of Taiwan. Water extract from jelly fig achenes has been utilized to produce jelly curd for making a popular drink in local markets. Two most abundant pericarpial proteins extracted from the jelly curd have been identified as a pectin methylesterase and an antifungal chitinase, and their corresponding cDNA fragments have also been cloned. The residual achenes after jelly curd making are discarded and they composed of intact seed cells with protein bodies and oil bodies.
In jelly fig protein body portion, two storage protein classes, including six 11S globulin isoforms and two 2S albumin isoforms, were identified. Complete sequences encoding the precursor polypeptides of these eight storage proteins were obtained by sequencing the pertinent EST clones that contained full-length cDNA fragments. MALDI-MS analyses confirmed the presence of these storage protein isoforms in the extract of jelly fig achenes resolved in SDS-PAGE. Amino acid compositions of the deduced storage proteins indicate that achene proteins in jelly fig are nutritive for both isoforms of 2S albumin are sulfur-rich with one of them also rich in tryptophan.
In jelly fig oil body portion, the contents stored in oil bodies isolated from jelly fig achenes were mainly neutral lipids (>90% triacylglycerols and ~5% diacylglycerols). Fatty acids released from the neutral lipids of achene oil bodies were highly unsaturated (62.65% α-linolenic acid, 18.24% linoleic acid, and 10.62% oleic acid). The integrity of isolated oil bodies was presumably maintained via electronegative repulsion and steric hindrance provided by their surface proteins. Immunological cross-recognition using antibodies against sesame oil-body proteins indicated that two oleosin isoforms and one caleosin were present in these oil bodies. MALDI-MS analyses confirmed that the three full-length cDNA fragments obtained by PCR cloning from maturing achenes encoded the two jelly fig oleosin isoforms and one caleosin identified by immunological screening.
A third abundant pericarpial protein was extracted from jelly curd and purified sequentially by 40% ammonium sulfate precipitation and Mono Q chromatography. In sodium dodecyl sulfate-polyacrylamide gel electrophoresis analyses, the purified protein migrated as a polypeptide of 20 kDa in the absence of β-mercaptoethanol but split into a minor polypeptide of 20 kDa and a major polypeptide of 27 kDa in the presence of this reducing agent. Two cDNA fragments encoding precursor polypeptides of two putative thaumatin-like protein isoforms were obtained by polymerase chain reaction cloning and subsequently overexpressed in Escherichia coli to generate recombinant proteins for antibody preparations. Immunological detection and mass spectrometric analyses indicated that the two split polypeptides were thaumatin-like protein isoforms encoded by the two cloned cDNA fragments.
URI: http://hdl.handle.net/11455/36142
其他識別: U0005-0801200815170600
Appears in Collections:生物科技學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.