Please use this identifier to cite or link to this item:
標題: 阿拉伯芥中NAC-like基因之分子選殖與功能性分析
Molecular cloning and functional analysis of NAC-like genes from Arabidopsis thaliana
作者: 林建鑫
Lin, Jian-Shin
關鍵字: NAC;頂芽分生組織;AtMYC2;SAM;defective stamen;barren silique;雄不孕;花序生長變異
出版社: 生物科技學研究所
引用: Abe, H., Urao, T., Ito, T., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). Arabidopsis AtMYC2 (bHLH) and AtMYB2 (MYB) function as transcriptional activators in abscisic acid signaling. Plant Cell 15, 63-78. Abe, H., Yamaguchi-Shinozaki, K., Urao, T., Iwasaki, T., and Shinozaki, K. (1997). Role of MYC and MYB homologs in drought- and abscisic acid-regulated gene expression. Plant Cell 9, 1859-1868. Aida, M., and Tasaka, M. (2006). Genetic control of shoot organ boundaries. Curr Opin Plant Biol. 9, 72-7. Aida, M., Ishida, T., and Tasaka, M. (1999). Shoot apical meristem and cotyledon formation during Arabidopsis embryogenesis: interaction among the CUP-SHAPED COTYLEDON and SHOOT MERISTEMLESS genes. Development 126, 1563-1570. Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., and Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of cup-shaped cotyledon mutant. Plant Cell 9, 841-857. Aida, M., Vernoux, T., Furutani, M., Traas, J., and Tasaka, M. (2002). Roles of PIN-FORMED1 and MONOPTEROS in pattern formation of the apical region of the Arabidopsis embryo. Development 129, 3965-3974. Avivi, Y., Morad V., Ben-Meir H., Zhao, J., Kashkush, K., Tzfira, T., Citovsky, V., and Grafi, G. (2004). Reorganization of specific chromosomal domains and activation of silent genes in plant cells acquiring pluripotentiality. Dev. Dyn. 230, 12-22. Blazquez, M.A., Soowal, L.N., Lee, I., and Weigel, D. (1997). LEAFY expression and flower initiation in Arabidopsis. Development 124, 3835-3844. Burkle, L., Cedzich, A., Dopke, C., Stransky, H., Okumoto, S., Gillissen, B., Kuhn, C., and Frommer, W.B. (2003). Transport of cytokinins mediated by purine transporters of the PUP family expressed in phloem, hydathodes, and pollen of Arabidopsis. Plant J. 34, 13-26. Byrne, M.E., Simorowski, J., and Martienssen, R.A. (2002). ASYMMETRIC LEAVES1 reveals knox gene redundancy in Arabidopsis. Development 129, 1957-1965. Carles, C.C., and Fletcher, J.C. (2003). Shoot apical meristem maintenance: the art of a dynamic balance. Trends Plant Sci. 8, 394-401. Carles, M., and Albert, B. (1998). Nucleotide sequence of an Arabidopsis cDNA encoding a protein with similarity to mammalian polypyrimidine tract-binding protein (PTB). Plant Physiol. 118, 330. Clark, S. E., Williams, R. W., and Meyerowitz, E. M. (1997). The CLAVATA1 gene encodes a putative receptor kinase that controls shoot and floral meristem size in Arabidopsis. Cell 89, 575-585. Collinge, M., and Boller, T. (2001). Differential induction of two potato genes, Stprx2 and StNAC, in response to infection by Phytophthora infestans and to wounding. Plant Mol. Biol. 46, 521-529. Daimon, Y., Takabe, K., and Tasaka, M. (2003). The CUP-SHAPED COTYLEDON genes promote adventitious shoot formation on calli. Plant Cell Physiol. 44, 113-121. Delessert, C., Kazan, K., Wilson, I.W., Van Der Straeten, D., Manners, J., Dennis, E.S., and Dolferus, R. (2005). The transcription factor ATAF2 represses the expression of pathogenesis-related genes in Arabidopsis. Plant J. 43, 745-757. Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts, K., and Scheres, B. (1993). Cellular organization of the Arabidopsis thaliana root. Development 119, 71-84. Duval, M., Hsieh, T., Kim, S. Y., and Thomas, T. L. (2002). Molecular characterization of AtNAM: a member of the Arabidopsis NAC domain superfamily. Plant Mol. Biol. 50, 237-248. Ernst, H.A., Olsen, A.N., Larsen, S., and Lo, L.L. (2004). Structure of the conserved domain of ANAC, a member of the NAC family of transcription factors. EMBO Rep. 5, 297-303. Fletcher, J.C., Brand, U., Running, M.P., Simon, R., and Meyerowitz, E.M. (1999). Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. Science 283, 1911-1914. Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme, T.M., Tran, L.S., Yamaguchi, S.K., and Shinozaki, K. (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39, 863-876. Furutani, M., Vernoux, T., Traas, J., Kato, T., Tasaka, M., and Aida, M. (2004). PIN-FORMED1 and PINOID regulate boundary formation and cotyledon development in Arabidopsis embryogenesis. Development 131, 5021-5030. Garcia-Hernandez, M., Berardini, T.Z., Chen, G., Crist, D., Doyle, A., Huala, E., Knee, E., Lambrecht, M., Miller, N., Mueller, L.A., Mundodi, S., Reiser, L., Rhee, S.Y., Scholl, R., Tacklind, J., Weems, D.C., Wu, Y., Xu, I., Yoo, D., Yoon, J., and Zhang, P. (2002). TAIR: a resource for integrated Arabidopsis data. Funct. Integr. Genomics. 2, 239-253. Gechev, T.S., Gadjev, I.Z., and Hille, J. (2004). An extensive microarray analysis of AALtoxin- induced cell death in Arabidopsis thaliana brings new insights into the complexity of programmed cell death in plants. Cell. Mol. Life Sci. 61, 1185-1197. Gietz, D., St. Jean, A., Woods, R.A., and Schiestl, R.H. (1992). Improved method for high efficiency transformation of intact yeast cells. Nucl. Acids Res 20, 1425. Grafi, G. (2004). How cells dedifferentiate: a lesson from plants. Dev. Biol. 268, 1-6. Greve, K., La Cour, T., Jensen, M.K., Poulsen, F.M., and Skriver, K. (2003). Interactions between plant RING-H2 and plantspecific NAC (NAM/ATAF1/2/CUC2) proteins: RING-H2 molecular specificity and cellular localization. Biochem. J. 371, 97-108. Guo, M., Rupe, M.A., Danilevskaya, O.N., Yang, X., and Hu, Z. (2003). Genome-wide mRNA profiling reveals heterochronic allelic variation and a new imprinted gene in hybrid maize endosperm. Plant J. 36, 30-44. Hayama, R., Izawa, T., and Shimamoto, K. (2002). Isolation of rice genes possibly involved in the photoperiodic control of flowering by a fluorescent differential display method. Plant Cell Physiol. 43, 494-504. Hegedus, D., Yu, M., Baldwin, D., Gruber, M., Sharpe, A., Parkin, I., Whitwill, S., and Lydiate, D. (2003). Molecular characterization of Brassica napus NAC domain transcriptional activators induced in response to biotic and abiotic stress. Plant Mol. Biol. 53, 383-397. Hennig, L., Gruissem, W., Grossniklaus, U., and Köhler, C. (2004). Transcriptional programs of early reproductive stages in Arabidopsis. Plant Physiol. 135, 1765-1775. Hibara, K., Takada, S., and Tasaka, M. (2003). CUC1 gene activates the expression of SAM-related genes to induce adventitious shoot formation. Plant J. 36, 687-696. Höfgen, R., and Willmitzer, L. (1988). Storage of competent cells for Agrobacterium transformation. Nucl. Acids Res. 16, 9877. Hoth, S., Morgante, M., Sanchez, J.P., Hanafey, M.K., Tingey, S.V., and Chua, N.H. (2002). Genome-wide gene expression profiling in Arabidopsis thaliana reveals new targets of abscisic acid and largely impaired gene regulation in the abi1-1 mutant. J. Cell Sci. 115, 4891-4900. Hu, W., Wang, Y., Bowers, C., and Ma, H. (2003). Isolation, sequence analysis, and expression studies of florally expressed cDNAs in Arabidopsis. Plant Mol. Biol. 53, 545-563. Hua, J., Grisafi, P., Cheng, S.H., and Fink, G.R. (2001). Plant growth homeostasis is controlled by the Arabidopsis BON1 and BAP1 genes. Genes Dev. 15, 2263-2272. Ishida, T., Aida, M., Takada, S., and Tasaka, M. (2000). Involvement of CUP-SHAPED COTYLEDON genes in gynoecium and ovule development in Arabidopsis thaliana. Plant Cell Physiol. 41, 60-67. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. (1987). GUS fusions: β-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J. 6, 3901-3907. Jeong, S., Trotochaud, A.E., and Clark, S.E. (1999). The Arabidopsis CLAVATA2 gene encodes a receptor-like protein required for the stability of the CLAVATA1 receptor-like kinase. Plant Cell 11, 1925-1933. Jiao, Y., Yang, H., Ma, L., Sun, N., Yu, H., Liu, T., Gao, Y., Gu, H., Chen, Z., Wada, M., Gerstein, M., Zhao, H., Qu, L.J., and Deng, X.W. (2003). A genome-wide analysis of blue-light regulation of Arabidopsis transcription factor gene expression during seedling development. Plant Physiol. 133, 1480-1493. John, I., Hackett, R., Cooper, W., Drake, R., Farrell, A., and Grierson, D. (1997). Cloning and characterization of tomato leaf senescence-related cDNAs. Plant Mol. Biol. 33, 641-651. Jurgens, G. (2001). Apical-basal pattern formation in Arabidopsis embryogenesis. EMBO J. 20, 3609-3616. Kikuchi, K., Ueguchi-Tanaka, M., Yoshida, T. K., Nagato, Y., Matsusoka, M., and Hirano, H. Y. (1999). Molecular analysis of the NAC gene family in rice. Mol. Gen. Genet. 262, 1047-1051. Kikuchi, S., Satoh, K., Nagata, T., Kawagashira, N., Doi, K., Kishimoto, N., Yazaki, J., Ishikawa, M., Yamada, H., Ooka, H., Hotta, I., Kojima, K., Namiki, T., Ohneda, E., Yahagi, W., Suzuki, K., Li, C.J., Ohtsuki, K., Shishiki, T., Otomo, Y., Murakami, K., Iida, Y., Sugano, S., Fujimura, T., Suzuki, Y., Tsunoda, Y., Kurosaki, T., Kodama, T., Masuda, H., Kobayashi, M., Xie, Q., Lu, M., Narikawa, R., Sugiyama, A., Mizuno, K., Yokomizo, S., Niikura, J., Ikeda, R., Ishibiki, J., Kawamata, M., Yoshimura, A., Miura, J., Kusumegi, T., Oka, M., Ryu, R., Ueda, M., Matsubara, K., Kawai, J., Carninci, P., Adachi, J., Aizawa, K., Arakawa, T., Fukuda, S., Hara, A., Hashizume, W., Hayatsu, N., Imotani, K., Ishii, Y., Itoh, M., Kagawa, I., Kondo, S., Konno, H., Miyazaki, A., Osato, N., Ota, Y., Saito, R., Sasaki, D., Sato, K., Shibata, K., Shinagawa, A., Shiraki, T., Yoshino, M., Hayashizaki, Y., and Yasunishi A. (2003). Collection, mapping, and annotation of over 28,000 cDNA clones from japonica rice. Science 310, 376-379. Kim, S.Y., Kim, S.G., Kim, Y.S., Seo, P.J., Bae, M., Yoon, H.K., and Park, C.M. (2007). Exploring membrane-associated NAC transcription factors in Arabidopsis: implications for membrane biology in genome regulation. Nucl. Acids Res. 35, 203-213. Kim, Y.S., Kim, S.G., Park, J.E., Park, H.Y., Lim, M.H., Chua, N.H., and Park, C.M. (2006). A Membrane-Bound NAC Transcription Factor Regulates Cell Division in Arabidopsis. Plant Cell 18, 3132-44. Kubo, M., Udagawa, M., Nishikubo, N., Horiguchi, G., Yamaguchi, M., Ito, J., Mimura, T., Fukuda, H., and Demura, T. (2005). Transcription switches for protoxylem and metaxylem vessel formation. Genes Dev. 19, 1855-60. Laufs, P., Grandjean, O., Jonak, C., Kiêu, K., and Traas, J. (1998). Cellular parameters of the shoot apical meristem in Arabidopsis. Plant Cell 10, 1375-1389. Laufs, P., Peaucelle, A., Morin, H., and Traas, J. (2004). MicroRNA regulation of the CUC genes is required for boundary size control in Arabidopsis meristems. Development 131, 4311-4322. Laux, T., Mayer, K.F.X., Berger, J., and Jürgens, G. (1996). The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122, 87-96. Lee, S., Cheng, H., King, K.E., Wang, W., He, Y., Hussain, A., Lo, J., Harberd, N.P., and Peng, J. (2002). Gibberellin regulates Arabidopsis seed germination via RGL2, a GAI/RGA-like gene whose expression is up-regulated following imbibition. Genes Dev. 16, 646-658. Lenhard, M., and Laux, T. (2003). Stem cell homeostasis in the Arabidopsis shoot meristem is regulated by intercellular movement of CLAVATA3 and its sequestration by CLAVATA1. Development 130, 3163-3173. Lenhard, M., Bohnert, A., Jürgens, G., and Laux, T. (2001). Termination of stem cell maintenance in Arabidopsis floral meristems by interactions between WUSCHEL and AGAMOUS. Cell 105, 805-814. Levin, J.Z., Fletcher, J.C., Chen, X., and Meyerowitz, E.M. (1998). A genetic screen for modifiers of UFO meristem activity identifies three novel FUSED FLORAL ORGANS genes required for early flower development in Arabidopsis. Genetics 149, 579-595. Lin, J.F., and Wu, S.H. (2004). Molecular events in senescing Arabidopsis leaves. Plant J. 39, 612-628. Liu, S.C. (2003). Molecular cloning and functional analysis of E3 RING finger genes from Arabidopsis thaliana. Graduate Institute of Biotechnology, National Chung Hsing University. Master Thesis. Lohmann, J., Hong, R., Hobe, M., Busch, M., Parcy, F., Simon, R., and Weigel, D. (2001). A molecular link between stem cell regulation and floral patterning in Arabidopsis. Cell 105, 793-803. Luo, D., Carpenter, R., Copsey, L., Vincent, C., Clark, J., and Coen E. (1999). Control of organ asymmetry in flowers of Antirrhinum. Cell 99, 367-376. Luran, N.H. (2006). Molecular cloning and functional analysis of GIGANTEA (GI) orthologues from Adiantum capillus-venen and NAC-like genes from Arabidopsis. Graduate Institute of Biotechnology, National Chung Hsing University. Master Thesis. Mayer, K.F.X., Schoof, H., Haecker, A., Lenhard, M., Jürgens, G., and Laux, T. (1998). Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. Cell 95, 805-815. Medford, J.I. (1992). Vegetative apical meristems. Plant Cell 4, 1029-1039. Meyerowitz, E.M. (1997). Genetic control of cell division patterns in developing plants. Cell 88, 299-308. Milksche, J.P., and Brown, J.A.M. (1965). Development of vegetative and floral meristems of Arabidopsis thaliana. Am. J. Bot. 52, 533-537. Miller, J.H. (1972). Experiments in Molecular Genetics. Cold Spring Harbor Labortory, Cold Spring Harbor, New York. Miller, J.H. (1992). In A Short Course in Bacterial Genetics. Cold Spring Harbor Labortory, Cold Spring Harbor, New York, p 74. Mitsuda, N., Seki, M., Shinozaki, K., and Ohme-Takagi, M. (2005). The NAC transcription factors NST1 and NST2 of Arabidopsis regulate secondary wall thickenings and are required for anther dehiscence. Plant Cell 17, 2993-3006. Nath, U., Crawford, B.C., Carpenter, R., and Coen, E. (2003). Genetic control of surface curvature. Science 299, 1404-1407. Neuteboom, L.W., Veth-Tello, L.M., Clijdesdale, O.R., Hooykaas, P.J., and van der Zaal, B.J. (1999). A novel subtilisin-like protease gene from Arabidopsis thaliana is expressed at sites of lateral root emergence. DNA Res. 6, 13-19. Olsen, A.N., Ernst, H.A., Leggio, L.L., and Skriver, K. (2005). NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10, 79-87. Olsen, A.N., Ernst, H.A., Lo Leggio, L., Johansson, E., Larsen, S., and Skriver, K. (2004). Preliminary crystallographic analysis of the NAC domain of ANAC, a member of the plant-specific NAC transcription factor family. Acta Crystallogr. D Biol. Crystallogr. 60, 112-115. Ooka, H., Satoh, K., Doi, K., Nagata, T., Otomo, Y., Murakami, K., Matsubara, K., Osato, N., Kawai, J., Carninci, P., Hayashizaki, Y., Suzuki, K., Kojima, K., Takahara, Y., Yamamoto, K., and Kikuchi, S. (2003). Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Res. 10, 239-247. Oono, Y., Seki, M., Nanjo, T., Narusaka, M., Fujita, M., Satoh, R., Satou, M,, Sakurai, T., Ishida, J., Akiyama, K., Iida, K., Maruyama, K., Satoh, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (2003). Monitoring expression profiles of Arabidopsis gene expression during rehydration process after dehydration using ca. 7000 full-length cDNA microarray. Plant J. 34, 868-887 Ori, N., Eshed, Y., Chuck, G., Bowman, J.L., and Hake, S. (2000). Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127, 5523-5532. Palatnik, J.F., Allenm E.,Wu, X., Schommer, C., Schwab, R., Carrington, J.C., and Weigel, D. (2003). Control of leaf morphogenesis by microRNAs. Nature 425, 257-263. Rabbani, M.A., Maruyama, K., Abe, H., Khan, M.A., Katsura, K., Ito, Y., Yoshiwara, K., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2003). Monitoring expression profiles of rice genes under cold, drought, and high-salinity stresses and abscisic acid application using cDNA microarray and RNA gel-blot analyses. Plant Physiol. 133, 1755-1767. Ren, T., Qu, F., and Morris, T.J. (2000). HRT gene function requires interaction between a NAC protein and viral capsid protein to confer resistance to turnip crinkle virus. Plant Cell 12, 1917-1925. Rhoades, M.W., Reinhart, B.J., Lim, L.P., Burge, C.B., Bartel, B., and Bartel, D.P. (2002). Prediction of plant microRNA targets. Cell 110, 513-520. Riechmann, J.L., Heard, J., Martin, G., Reuber, L., Jiang, C., Keddie, J., Adam, L., Pineda, O., Ratcliffe, O.J., Samaha, R.R., Creelman, R., Pilgrim, M., Broun, P., Zhang, J.Z., Ghandehari, D., Sherman, B.K., and Yu, G. (2000). Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290, 2105-2110. Robertson, M. (2004). Two transcription factors are negative regulators of gibberellin response in the HvSPY-signaling pathway in barley aleurone. Plant Physiol. 136, 1-15. Ruiz-Medrano, R., Xoconostle-Cázares, B., and Lucas, W. J. (1999). Phloem long-distance transport of CmNACP mRNA: implications for supracellular regulation in plants. Development 126, 4405-4419. Sablowski, R.W.M., and Meyerowitz, E.M. (1998). A homolog of NO APICAL MERISTEM is immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92, 93-103. Schenk, P.M., Kazan, K., Manners, J.M., Anderson, J.P., Simpson, R.S., Wilson, I.W., Somerville, S.C., and Maclean, D.J. (2003). Systemic gene expression in Arabidopsis during an incompatible interaction with Alternaria brassicicola. Plant Physiol. 132, 999-1010. Schmitz, G., and Theres, K. (2005). Shoot and inflorescence branching. Curr Opin Plant Biol. 8, 506-511. Schoof, H., Lenhard, M., Haecker, A., Mayer, K., Jürgens, G., and Laux, T. (2000). The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. Cell 100, 635-644. Schwacke, R., Schneider, A., van der Graaff, E., Fischer, K., Catoni, E., Desimone, M., Frommer, W.B., Flügge, U.I., and Kunze, R. (2003). ARAMEMNON, a novel database for Arabidopsis integral membrane proteins. Plant Physiol. 131, 16-26. Seki, M., Ishida, J., Narusaka, M., Fujita, M., Nanjo, T., Umezawa, T., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Yamaguchi-Shinozaki, K,, Carninci, P., Kawai, J., Hayashizaki, Y., and Shinozaki, K. (2002). Monitoring the expression pattern of around 7,000 Arabidopsis genes under ABA treatments using a full-length cDNA microarray. Funct. Integr. Genomics 2, 282-291. Seki, M., Narusaka, M., Ishida, J., Nanjo, T., Fujita, M., Oono, Y., Kamiya, A., Nakajima, M., Enju, A., Sakurai, T., Satou, M., Akiyama, K., Taji, T., Yamaguchi-Shinozaki, K., Carninci, P., Kawai, J., Hayashizaki, Y., and Shinozaki, K. (2002). Monitoring the expression profiles of 7000 Arabidopsis genes under drought, cold and high-salinity stresses using a full-length cDNA microarray. Plant J. 31, 279-292. Semiarti, E., Ueno, Y., Tsukaya, H., Iwakawa, H., Machida, C., and Machida, Y. (2001). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development 128, 1771-1783. Shih, C.F. (2004). Functional analysis and the application of NAC-like genes and GIGANTEA (GI) orthologues in regulating meristematic activity, flowering and senescence in plants. Graduate Institute of Biotechnology, National Chung Hsing University. Master Thesis. Sieburth, L. E., Running, M. P., and Meyerowitz, E. M. (1995). Genetic separation of third and fourth whorl functions of AGAMOUS. Plant Cell 7, 1249-1258. Soltis, D.E., Soltis, P.S., Albert, V.A., Oppenheimer, D.G., dePamphilis, C.W., Ma, H., Frohlich, M.W., and Theissen, G. (2002). Missing links: the genetic architecture of flowers and floral diversification. Trends Plant Sci. 7, 22-31. Souer, E., von Houwelingen, A., Kloos, D., Mol, J., and Koes, R. (1996). The No Apical Meristem gene of Petunia is required for pattern formation in embryos and flowers and is expressed at meristem and primordia boundaries. Cell, 85, 159-170. Steeves, T.A., and Sussex, I.M. (1989). Patterns in plant development, Cambridge University Press, New York Szymkowiak, E.J., and Sussex, I.M. (1996). What chimeras can tell us about plant development. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 351-376. Takada, S., Hibara, K., Ishida, T., and Tasaka, M. (2001). The CUP-SHAPED COTYLEDON1 gene of Arabidopsis regulates shoot apical meristem formation. Development 128, 1127-1135. Tran, L.S., Nakashimaa, K., Sakumaa, Y., Simpsonb, S., Fujitaa, Y., Maruyamaa, K., Fujitac, M., Sekic, M., Shinozakic, K., and Yamaguchi-Shinozaki D.K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought responsive cis-element in the EARLY RESPONSIVE TO DEHYDRATION STRESS 1 promoter. Plant Cell 16, 2481-2498. Tyler, L., Thomas, S.G., Hu, J., Dill, A., Alonso, J.M., Ecker, J.R., and Sun, T.P. (2004). Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol. 135, 1008-1019. Ulm, R., Baumann, A., Oravecz, A., Máté, Z., Adám, E., Oakeley, E.J., Schäfer, E., and Nagy, F. (2004). Genome-wide analysis of gene expression reveals function of the bZIP transcription factor HY5 in the UV-B response of Arabidopsis. Proc. Natl. Acad. Sci. USA 101, 1397-1402. Van den Berg, C., Willemsen, V., Hendriks, G., Weisbeek, P., and Scheres, B. (1997). Short-range control of cell differentiation in the Arabidopsis root meristem. Nature 390: 287-289. Vandenabeele, S., Vanderauwera, S., Vuylsteke, M., Rombauts, S., Langebartels, C., Seidlitz, H.K., Zabeau, M., Van Montagu, M., Inzé, D., and Van Breusegem, F. (2004). Catalase deficiency drastically affects gene expression induced by high light in Arabidopsis thaliana. Plant J. 39, 45-58. Verica, J.A., Chae, L., Tong, H., Ingmire, P., and He, Z.H. (2003). Tissue-specific and developmentally regulated expression of a cluster of tandemly arrayed cell wall-associated kinase-like kinase genes in Arabidopsis. Plant Physiol. 133, 1732-1746. Vierstra, R.D. (2003). The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends Plant Sci. 8, 135-142. Vroemen, C.W., Mordhorst, A.P., Albrecht, C., Kwaaitaal, M.A., and de Vries, S.C. (2003). The CUP-SHAPED COTYLEDON3 gene is required for boundary and shoot meristem formation in Arabidopsis. Plant Cell 15, 1563-1577. Weigel, D., Alvarez, J., Smyth, D.R., Yanofsky, M.F., and Meyerowitz, E.M. (1992). LEAFY controls floral meristem identity in Arabidopsis. Cell 69, 843-859. Weir, I., Lu, J., Cook, H., Causier, B., Schwarz-Sommer, Z., and Davies, B. (2004). CUPULIFORMIS establishes lateral organ boundaries in Antirrhinum. Development 131, 915-922. Wellmer, F., Riechmann, J.L., Alves-Ferreira, M., and Meyerowitz, E.M. (2004). Genome-wide analysis of spatial gene expression in Arabidopsis flowers. Plant Cell 16, 1314-1326. Xie ,Q., Frugis, G., Colgan, D., and Chua, N.H. (2000). Arabidopsis NAC1 transduces auxin signal downstream of TIR1 to promote lateral root development. Genes Dev. 14, 3024-3036. Xie, Q., Guo, H.S., Dallman, G., Fang, S., Weissman, A.M., and Chua, N.H. (2002). SINAT5 promotes ubiquitin-related degradation of NAC1 to attenuate auxin signals. Nature 419, 167-170. Xie, Q., Sanz-Burgos, A.P., Guo, H., Garcia, J.A., and Gutierrez, C. (1999). GRAB proteins novel members of the NAC domain family isolated by their interaction with a geminivirus protein. Plant Mol. Biol. 39, 647-656. Yanofsky, M.F., Ma, H., John L. Bowman, J.L., Drews, G.N., Feldmann, K.A., and Meyerowitz, E.M. (1990). The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346, 35-39. Zhao, Y., Medrano, L., Ohashi, K., Fletcher, J.C., Yu, H., Sakai, H., and Meyerowitz, E.M. (2004). HANABA TARANU is a GATA transcription factor that regulates shoot apical meristem and flower development in Arabidopsis. Plant Cell 16, 2586-2600. Zhong, R., Demura, T., and Ye, Z.H. (2006). SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of Arabidopsis. Plant Cell 18, 3158-3170.
NAC-like基因群是植物中所特有的轉錄因子,它們是一群在蛋白質N端帶有150個高度保留氨基酸NAC(for NAM, ATAF1, 2, and CUC2)domain的基因群,並被認為會參與調控多種植物的發育過程。本研究在分析四個阿拉伯芥的NAC-like基因:AtNACL8、AtNACL10、AtNACL11及AtNACL12。經演化樹分析,它們同屬於NAC家族中NAC2的子群。在此四個基因表現量部份,植物生長早期隨著生長時期增長,mRNA表現有所提升,並在不同組織如:營養葉、腋生葉、花苞及花序中皆可偵測到mRNA表現。經過不同賀爾蒙及逆境處理發現這四個基因表現量分別會受到不同程度的影響。進一步構築此四個基因的promoter藉由驅動GUS報導基因的表現來呈現它們的表現位置。結果發現AtNACL8在根、子葉、頂芽分生組織、營養葉與腋生葉邊緣及花器皆有大量表現;AtNACL10則是只有在根、頂芽分生組織及花器有微量表現。AtNACL11及AtNACL12的表現很相似,在根、子葉及頂芽分生組織都可觀察到有大量表現。進一步透過GFP螢光分析結果證實AtNACL8及AtNACL10蛋白質能夠進入細胞核。另外在35S::AtNACL8轉基因植株中觀察到雄蕊發育異常及果莢不孕的現象。在35S::AtNACL8 antisense及35S::AtNACL10 antisense皆發現有花序生長變異,如:花序的同一節間位置長出多個次生花序。相似的花序生長變異同時也發現於AtNACL8 T-DNA insertion及AtNACL8與AtNACL10 RNA interference的突變株。經由軟體預測及實驗發現有四個基因會受到AtNACL8蛋白所調控。本研究並以yeast two-hybrid的系統分別鑑識出能與AtNACL8及AtNACL10相互作用之八個蛋白質。將來進一步的探討這些基因及蛋白質,所得結果將對NAC-like基因群在調控植物生長發育的功能上提供更深入的了解。

NAC-like genes, a class of plant-specific transcription factors, are characterized by having a highly conserved 150 amino acid NAC(for NAM, ATAF1, 2, and CUC2)domain at their N-terminal of proteins and have been thought to be involved in the regulation of diverse plant development processes. In this study, four Arabidopsis NAC-like genes AtNACL8, AtNACL10, AtNACL11 and AtNACL12 in NAC2 subgroup were isolated and analyzed. AtNACL8, AtNACL10, AtNACL11 and AtNACL12 mRNA were detected early and were increased gradually after germination. Their mRNA is also expressed in rosette leaves, cauline leaves, flowers and inflorescence. Different hormones and abioic stresses influenced their gene expression. Further promoter assay by transforming constructs fusing the promoter of these genes with report GUS gene in Arabidopsis indicated that AtNACL8 was highly expressed in roots, cotyledon, shoot apical meristem, margin of leaves and flowers whereas AtNACL10 was only weakly expressed in roots, shoot apical meristem and flowers. AtNACL11 and AtNACL12 showed similar expression pattern by highly expressing in roots, cotyledon and shoot apical meristem. Further analysis indicated that AtNACL8 and AtNACL10 proteins were able to enter nucleus by fusing with GFP protein. Defective stamen and barren siliques were observed in 35S::AtNACL8 transgenic plants. The alteration of shoot formation such as the production of more than one lateral organ on the same position of floral axis was found in 35S::AtNACL8 anti-sense and 35S::AtNACL10 anti-sense transgenic plants. Similar alteration of shoot formation was also observed in AtNACL8 T-DNA insertion, AtNACL8 and AtNACL10 RNA interference mutant. By way of the software prediction and the experiment analysis discoveried four genes to be able to regulated by AtNACL8 protein. To investigate the function of AtNACL8 and AtNACL10 action, yeast two-hybrid screening using AtNACL8 and AtNACL10 as a bait was performed. Eight proteins that interacted with AtNACL8 and AtNACL10 proteins were identified. Further analysis of these proteins should lead to a deeper understanding of the function for these NAC-like genes in regulating plant development.
其他識別: U0005-2408200706493700
Appears in Collections:生物科技學研究所

Show full item record
TAIR Related Article

Google ScholarTM


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.