Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36152
標題: 楊桃細菌性斑點病菌保留因子區內基因之特性分析
Characterization of effector genes in conserved effector locus of Pseudomonas syringae pv. averrhoi
作者: 許嘉真
Hsu, Chia-Chen
關鍵字: Pseudomonas syringae pv. averrhoi;楊桃細菌性斑點病菌;type III secretion system (T3SS);conserved effector locus (CEL);第三型分泌系統;保留性因子區
出版社: 生物科技學研究所
引用: Abramovitch, R.B., Kim, Y.J., Chen, S., Dickman, M.B., and Martin, G.B. (2003) Pseudomonas type III effector AvrPtoB induces plant disease susceptibility by inhibition of host programmed cell death. Embo J 22: 60-69. Abramovitch, R.B., Anderson, J.C., and Martin, G.B. (2006) Bacterial elicitation and evasion of plant innate immunity. Nat Rev Mol Cell Biol 7: 601-611. Aldridge, P., and Hughes, K.T. (2001) How and when are substrates selected for type III secretion? Trends Microbiol 9: 209-214. Alfano, J.R., and Collmer, A. (1997) The type III (Hrp) secretion pathway of plant pathogenic bacteria: trafficking harpins, Avr proteins, and death. J Bacteriol 179: 5655-5662. Alfano, J.R., Klm, H.S., Delaney, T.P., and Collmer, A. (1997) Evidence that the Pseudomonas syringae pv. syringae hrp-linked hrmA gene encodes an Avr-like protein that acts in an hrp-dependent manner within tobacco cells. Mol Plant Microbe Interact 10: 580-588. Alfano, J.R., Charkowski, A.O., Deng, W.L., Badel, J.L., Petnicki-Ocwieja, T., van Dijk, K., and Collmer, A. (2000) The Pseudomonas syringae Hrp pathogenicity island has a tripartite mosaic structure composed of a cluster of type III secretion genes bounded by exchangeable effector and conserved effector loci that contribute to parasitic fitness and pathogenicity in plants. Proc Natl Acad Sci U S A 97: 4856-4861. Anderson, D.M., and Schneewind, O. (1997) A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science 278: 1140-1143. Arlat, M., Van Gijsegem, F., Huet, J.C., Pernollet, J.C., and Boucher, C.A. (1994) PopA1, a protein which induces a hypersensitivity-like response on specific Petunia genotypes, is secreted via the Hrp pathway of Pseudomonas solanacearum. Embo J 13: 543-553. Ausubel, F.M., Brent, R., Kingston, R.E., Moore, D.D., Seidman, J.G., Smith, J.A., and Struhl, K.E. (1995) Short protocols in molecular biology, 3rd ed. John Wiley & Sons, New York, N. Y. Badel, J.L., Charkowski, A.O., Deng, W.L., and Collmer, A. (2002) A gene in the Pseudomonas syringae pv. tomato Hrp pathogenicity island conserved effector locus, hopPtoA1, contributes to efficient formation of bacterial colonies in planta and is duplicated elsewhere in the genome. Mol Plant Microbe Interact 15: 1014-1024. Badel, J.L., Nomura, K., Bandyopadhyay, S., Shimizu, R., Collmer, A., and He, S.Y. (2003) Pseudomonas syringae pv. tomato DC3000 HopPtoM (CEL ORF3) is important for lesion formation but not growth in tomato and is secreted and translocated by the Hrp type III secretion system in a chaperone-dependent manner. Mol Microbiol 49: 1239-1251. Badel, J.L., Shimizu, R., Oh, H.S., and Collmer, A. (2006) A Pseudomonas syringae pv. tomato avrE1/hopM1 mutant is severely reduced in growth and lesion formation in tomato. Mol Plant Microbe Interact 19: 99-111. Baker, C.J., Atkinson, M.M., and Collmer, A. (1987) Concurrent loss in Tn5 mutants of Pseudomonas syringae pv. syringae of the ability to induce the hypersensitive response and host plama membrane K+/H+ exchange in tobacco. Phytopathology 77: 1268-1272. Baron, C., Llosa, M., Zhou, S., and Zambryski, P.C. (1997) VirB1, a component of the T-complex transfer machinery of Agrobacterium tumefaciens, is processed to a C-terminal secreted product, VirB1. J Bacteriol 179: 1203-1210. Boch, J., Joardar, V., Gao, L., Robertson, T.L., Lim, M., and Kunkel, B.N. (2002) Identification of Pseudomonas syringae pv. tomato genes induced during infection of Arabidopsis thaliana. Mol Microbiol 44: 73-88. Bogdanove, A.J., Bauer, D.W., and Beer, S.V. (1998a) Erwinia amylovora secretes DspE, a pathogenicity factor and functional AvrE homolog, through the Hrp (type III secretion) pathway. J Bacteriol 180: 2244-2247. Bogdanove, A.J., Kim, J.F., Wei, Z., Kolchinsky, P., Charkowski, A.O., Conlin, A.K., Collmer, A., and Beer, S.V. (1998b) Homology and functional similarity of an hrp-linked pathogenicity locus, dspEF, of Erwinia amylovora and the avirulence locus avrE of Pseudomonas syringae pathovar tomato. Proc Natl Acad Sci U S A 95: 1325-1330. Boureau, T., ElMaarouf-Bouteau, H., Garnier, A., Brisset, M.N., Perino, C., Pucheu, I., and Barny, M.A. (2006) DspA/E, a type III effector essential for Erwinia amylovora pathogenicity and growth in planta, induces cell death in host apple and nonhost tobacco plants. Mol Plant Microbe Interact 19: 16-24. Boyd, A.P., Lambermont, I., and Cornelis, G.R. (2000) Competition between the Yops of Yersinia enterocolitica for delivery into eukaryotic cells: role of the SycE chaperone binding domain of YopE. J Bacteriol 182: 4811-4821. Buell, C.R., Joardar, V., Lindeberg, M., Selengut, J., Paulsen, I.T., Gwinn, M.L., Dodson, R.J., Deboy, R.T., Durkin, A.S., Kolonay, J.F., Madupu, R., Daugherty, S., Brinkac, L., Beanan, M.J., Haft, D.H., Nelson, W.C., Davidsen, T., Zafar, N., Zhou, L., Liu, J., Yuan, Q., Khouri, H., Fedorova, N., Tran, B., Russell, D., Berry, K., Utterback, T., Van Aken, S.E., Feldblyum, T.V., D''Ascenzo, M., Deng, W.L., Ramos, A.R., Alfano, J.R., Cartinhour, S., Chatterjee, A.K., Delaney, T.P., Lazarowitz, S.G., Martin, G.B., Schneider, D.J., Tang, X., Bender, C.L., White, O., Fraser, C.M., and Collmer, A. (2003) The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 100: 10181-10186. Casadaban, M.J. (1976) Transposition and fusion of the lac genes to selected promoters in Escherichia coli using bacteriophage lambda and Mu. J Mol Biol 104: 541-555. Cascales, E., and Christie, P.J. (2003) The versatile bacterial type IV secretion systems. Nat Rev Microbiol 1: 137-149. Charity, J.C., Pak, K., Delwiche, C.F., and Hutcheson, S.W. (2003) Novel exchangeable effector loci associated with the Pseudomonas syringae hrp pathogenicity island: evidence for integron-like assembly from transposed gene cassettes. Mol Plant Microbe Interact 16: 495-507. Charkowski, A.O., Alfano, J.R., Preston, G., Yuan, J., He, S.Y., and Collmer, A. (1998) The Pseudomonas syringae pv. tomato HrpW protein has domains similar to harpins and pectate lyases and can elicit the plant hypersensitive response and bind to pectate. J Bacteriol 180: 5211-5217. Chen, K.-T. (2000) The characteristics of Pseudomonas syringae from carambola. Department of Plant Pathology, National Chung Hsing University, M.S. thesis. (in Chinese) Cheng, L.W., Anderson, D.M., and Schneewind, O. (1997) Two independent type III secretion mechanisms for YopE in Yersinia enterocolitica. Mol Microbiol 24: 757-765. Claros, M.G., and von Heijne, G. (1994) TopPred II: an improved software for membrane protein structure predictions. Comput Appl Biosci 10: 685-686. Collmer, A., Badel, J.L., Charkowski, A.O., Deng, W.L., Fouts, D.E., Ramos, A.R., Rehm, A.H., Anderson, D.M., Schneewind, O., van Dijk, K., and Alfano, J.R. (2000) Pseudomonas syringae Hrp type III secretion system and effector proteins. Proc Natl Acad Sci U S A 97: 8770-8777. Cornelis, G.R., and Van Gijsegem, F. (2000) Assembly and function of type III secretory systems. Annu Rev Microbiol 54: 735-774. DebRoy, S., Thilmony, R., Kwack, Y.B., Nomura, K., and He, S.Y. (2004) A family of conserved bacterial effectors inhibits salicylic acid-mediated basal immunity and promotes disease necrosis in plants. Proc Natl Acad Sci U S A 101: 9927-9932. Deng, W.L., and Huang, H.C. (1999) Cellular locations of Pseudomonas syringae pv. syringae HrcC and HrcJ proteins, required for harpin secretion via the type III pathway. J Bacteriol 181: 2298-2301. Deng, W.L., Rehm, A.H., Charkowski, A.O., Rojas, C.M., and Collmer, A. (2003) Pseudomonas syringae exchangeable effector loci: sequence diversity in representative pathovars and virulence function in P. syringae pv. syringae B728a. J Bacteriol 185: 2592-2602. Ditta, G., Stanfield, S., Corbin, D., and Helinski, D.R. (1980) Broad host range DNA cloning system for gram-negative bacteria: construction of a gene bank of Rhizobium meliloti. Proc Natl Acad Sci U S A 77: 7347-7351. El-Maarouf, H., Barny, M.A., Rona, J.P., and Bouteau, F. (2001) Harpin, a hypersensitive response elicitor from Erwinia amylovora, regulates ion channel activities in Arabidopsis thaliana suspension cells. FEBS Lett 497: 82-84. Feldman, M.F., and Cornelis, G.R. (2003) The multitalented type III chaperones: all you can do with 15 kDa. FEMS Microbiol Lett 219: 151-158. Felsenstein, J. (1993) PHYLIP (Phylogeny Inference Package) version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle. Frithz-Lindsten, E., Rosqvist, R., Johansson, L., and Forsberg, A. (1995) The chaperone-like protein YerA of Yersinia pseudotuberculosis stabilizes YopE in the cytoplasm but is dispensible for targeting to the secretion loci. Mol Microbiol 16: 635-647. Fu, Z.Q., Guo, M., Jeong, B.R., Tian, F., Elthon, T.E., Cerny, R.L., Staiger, D., and Alfano, J.R. (2007) A type III effector ADP-ribosylates RNA-binding proteins and quells plant immunity. Nature 447: 284-288. Galan, J.E., and Collmer, A. (1999) Type III secretion machines: bacterial devices for protein delivery into host cells. Science 284: 1322-1328. Gaudriault, S., Malandrin, L., Paulin, J.P., and Barny, M.A. (1997) DspA, an essential pathogenicity factor of Erwinia amylovora showing homology with AvrE of Pseudomonas syringae, is secreted via the Hrp secretion pathway in a DspB-dependent way. Mol Microbiol 26: 1057-1069. Gaudriault, S., Brisset, M.N., and Barny, M.A. (1998) HrpW of Erwinia amylovora, a new Hrp-secreted protein. FEBS Lett 428: 224-228. Grant, S.R., Fisher, E.J., Chang, J.H., Mole, B.M., and Dangl, J.L. (2006) Subterfuge and manipulation: type III effector proteins of phytopathogenic bacteria. Annu Rev Microbiol 60: 425-449. Greenberg, J.T., and Vinatzer, B.A. (2003) Identifying type III effectors of plant pathogens and analyzing their interaction with plant cells. Curr Opin Microbiol 6: 20-28. Groisman, E.A., and Ochman, H. (1996) Pathogenicity islands: bacterial evolution in quantum leaps. Cell 87: 791-794. Guttman, D.S., Vinatzer, B.A., Sarkar, S.F., Ranall, M.V., Kettler, G., and Greenberg, J.T. (2002) A functional screen for the type III (Hrp) secretome of the plant pathogen Pseudomonas syringae. Science 295: 1722-1726. Ham, J.H., Majerczak, D.R., Arroyo-Rodriguez, A.S., Mackey, D.M., and Coplin, D.L. (2006) WtsE, an AvrE-family effector protein from Pantoea stewartii subsp. stewartii, causes disease-associated cell death in corn and requires a chaperone protein for stability. Mol Plant Microbe Interact 19: 1092-1102. He, P., Chintamanani, S., Chen, Z., Zhu, L., Kunkel, B.N., Alfano, J.R., Tang, X., and Zhou, J.M. (2004) Activation of a COI1-dependent pathway in Arabidopsis by Pseudomonas syringae type III effectors and coronatine. Plant J 37: 589-602. He, S.Y., Huang, H.C., and Collmer, A. (1993) Pseudomonas syringae pv. syringae harpinPss: a protein that is secreted via the Hrp pathway and elicits the hypersensitive response in plants. Cell 73: 1255-1266. Heath, M.C. (2000) Hypersensitive response-related death. Plant Mol Biol 44: 321-334. Hensel, M., Nikolaus, T., and Egelseer, C. (1999) Molecular and functional analysis indicates a mosaic structure of Salmonella pathogenicity island 2. Mol Microbiol 31: 489-498. Heu, S., and Hutcheson, S.W. (1993) Nucleotide sequence and properties of the hrmA locus associated with the Pseudomonas syringae pv. syringae 61 hrp gene cluster. Mol Plant Microbe Interact 6: 553-564. Hirano, S.S., and Upper, C.D. (2000) Bacteria in the leaf ecosystem with emphasis on Pseudomonas syringae-a pathogen, ice nucleus, and epiphyte. Microbiol Mol Biol Rev 64: 624-653. Hofmann, K., Bucher, P., Falquet, L., and Bairoch, A. (1999) The PROSITE database, its status in 1999. Nucleic Acids Res 27: 215-219. Holtje, J.V. (1998) Growth of the stress-bearing and shape-maintaining murein sacculus of Escherichia coli. Microbiol Mol Biol Rev 62: 181-203. Hoppner, C., Carle, A., Sivanesan, D., Hoeppner, S., and Baron, C. (2005) The putative lytic transglycosylase VirB1 from Brucella suis interacts with the type IV secretion system core components VirB8, VirB9 and VirB11. Microbiology 151: 3469-3482. Huang, H.-C., Hutcheson, S.W., and Collmer, A. (1991) Characterization of the hrp cluster from Pseudomonas syringae pv. syringae 61 and TnphoA Tagging of Genes Encoding Exported or Membrane-Spanning Hrp protein. Molecular Plant -Microbe Interactions 4: 469-476. Huang, H.C., Schuurink, R., Denny, T.P., Atkinson, M.M., Baker, C.J., Yucel, I., Hutcheson, S.W., and Collmer, A. (1988) Molecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco plants. J Bacteriol 170: 4748-4756. Hueck, C.J. (1998) Type III protein secretion systems in bacterial pathogens of animals and plants. Microbiol Mol Biol Rev 62: 379-433. Huynh, T.V., Dahlbeck, D., and Staskawicz, B.J. (1989) Bacterial blight of soybean: regulation of a pathogen gene determining host cultivar specificity. Science 245: 1374-1377. Innis, M.A., Gelfand, D.H., Sninsky, J.J., and White, T.J. (1990) PCR protocols. San Diego: Academic Press. Jamir, Y., Guo, M., Oh, H.S., Petnicki-Ocwieja, T., Chen, S., Tang, X., Dickman, M.B., Collmer, A., and Alfano, J.R. (2004) Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. Plant J 37: 554-565. Kang, L., Tang, X., and Mysore, K.S. (2004) Pseudomonas Type III effector AvrPto suppresses the programmed cell death induced by two nonhost pathogens in Nicotiana benthamiana and tomato. Mol Plant Microbe Interact 17: 1328-1336. Karavolos, M.H., Roe, A.J., Wilson, M., Henderson, J., Lee, J.J., Gally, D.L., and Khan, C.M. (2005) Type III secretion of the Salmonella effector protein SopE is mediated via an N-terminal amino acid signal and not an mRNA sequence. J Bacteriol 187: 1559-1567. Keen, N.T. (1990) Gene-for-gene complementarity in plant-pathogen interactions. Annu Rev Genet 24: 447-463. King, E.O., Ward, M.K., and Raney, D.E. (1954) Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44: 301-307. Koraimann, G. (2003) Lytic transglycosylases in macromolecular transport systems of Gram-negative bacteria. Cell Mol Life Sci 60: 2371-2388. Kovach, M.E., Elzer, P.H., Hill, D.S., Robertson, G.T., Farris, M.A., Roop, R.M., 2nd, and Peterson, K.M. (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166: 175-176. Lee, J., Klusener, B., Tsiamis, G., Stevens, C., Neyt, C., Tampakaki, A.P., Panopoulos, N.J., Noller, J., Weiler, E.W., Cornelis, G.R., Mansfield, J.W., and Nurnberger, T. (2001) HrpZ(Psph) from the plant pathogen Pseudomonas syringae pv. phaseolicola binds to lipid bilayers and forms an ion-conducting pore in vitro. Proc Natl Acad Sci U S A 98: 289-294. Lin, Y.-C. (2006) Characterization of virulence-related genes from Pseudomonas syringae pvs. syringae and averrhoi. Department of Plant Pathology, National Chung Hsing University, Ph.D. thesis. (in Chinese) Lindeberg, M., Stavrinides, J., Chang, J.H., Alfano, J.R., Collmer, A., Dangl, J.L., Greenberg, J.T., Mansfield, J.W., and Guttman, D.S. (2005) Proposed guidelines for a unified nomenclature and phylogenetic analysis of type III Hop effector proteins in the plant pathogen Pseudomonas syringae. Mol Plant Microbe Interact 18: 275-282. Lindgren, P.B., Peet, R.C., and Panopoulos, N.J. (1986) Gene cluster of Pseudomonas syringae pv. "phaseolicola" controls pathogenicity of bean plants and hypersensitivity of nonhost plants. J Bacteriol 168: 512-522. Llosa, M., Zupan, J., Baron, C., and Zambryski, P. (2000) The N- and C-terminal portions of the Agrobacterium VirB1 protein independently enhance tumorigenesis. J Bacteriol 182: 3437-3445. Lloyd, S.A., Sjostrom, M., Andersson, S., and Wolf-Watz, H. (2002) Molecular characterization of type III secretion signals via analysis of synthetic N-terminal amino acid sequences. Mol Microbiol 43: 51-59. Lopez-Solanilla, E., Bronstein, P.A., Schneider, A.R., and Collmer, A. (2004) HopPtoN is a Pseudomonas syringae Hrp (type III secretion system) cysteine protease effector that suppresses pathogen-induced necrosis associated with both compatible and incompatible plant interactions. Mol Microbiol 54: 353-365. Lorang, J.M., and Keen, N.T. (1995) Characterization of avrE from Pseudomonas syringae pv. tomato: a hrp-linked avirulence locus consisting of at least two transcriptional units. Mol Plant Microbe Interact 8: 49-57. McIver, K.S., Kessler, E., Olson, J.C., and Ohman, D.E. (1995) The elastase propeptide functions as an intramolecular chaperone required for elastase activity and secretion in Pseudomonas aeruginosa. Mol Microbiol 18: 877-889. Menard, R., Sansonetti, P., Parsot, C., and Vasselon, T. (1994) Extracellular association and cytoplasmic partitioning of the IpaB and IpaC invasins of S. flexneri. Cell 79: 515-525. Moak, M., and Molineux, I.J. (2000) Role of the Gp16 lytic transglycosylase motif in bacteriophage T7 virions at the initiation of infection. Mol Microbiol 37: 345-355. Mota, L.J., Sorg, I., and Cornelis, G.R. (2005) Type III secretion: the bacteria-eukaryotic cell express. FEMS Microbiol Lett 252: 1-10. Mushegian, A.R., Fullner, K.J., Koonin, E.V., and Nester, E.W. (1996) A family of lysozyme-like virulence factors in bacterial pathogens of plants and animals. Proc Natl Acad Sci U S A 93: 7321-7326. Nakai, K., and Kanehisa, M. (1992) A knowledge base for predicting protein localization sites in eukaryotic cells. Genomics 14: 897-911. Nambu, T., Minamino, T., Macnab, R.M., and Kutsukake, K. (1999) Peptidoglycan-hydrolyzing activity of the FlgJ protein, essential for flagellar rod formation in Salmonella typhimurium. J Bacteriol 181: 1555-1561. Nielsen, H., Engelbrecht, J., Brunak, S., and von Heijne, G. (1997) A neural network method for identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Int J Neural Syst 8: 581-599. Niepold, F., Anderson, D., and Mills, D. (1985) Cloning determinants of pathogenesis from Pseudomonas syringae pathovar syringae. Proc Natl Acad Sci U S A 82: 406-410. Noel, L., Thieme, F., Gabler, J., Buttner, D., and Bonas, U. (2003) XopC and XopJ, two novel type III effector proteins from Xanthomonas campestris pv. vesicatoria. J Bacteriol 185: 7092-7102. Nomura, K., Debroy, S., Lee, Y.H., Pumplin, N., Jones, J., and He, S.Y. (2006) A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313: 220-223. Oh, H.S., and Collmer, A. (2005) Basal resistance against bacteria in Nicotiana benthamiana leaves is accompanied by reduced vascular staining and suppressed by multiple Pseudomonas syringae type III secretion system effector proteins. Plant J 44: 348-359. Petnicki-Ocwieja, T., Schneider, D.J., Tam, V.C., Chancey, S.T., Shan, L., Jamir, Y., Schechter, L.M., Janes, M.D., Buell, C.R., Tang, X., Collmer, A., and Alfano, J.R. (2002) Genomewide identification of proteins secreted by the Hrp type III protein secretion system of Pseudomonas syringae pv. tomato DC3000. Proc Natl Acad Sci U S A 99: 7652-7657. Rambow-Larsen, A.A., and Weiss, A.A. (2002) The PtlE protein of Bordetella pertussis has peptidoglycanase activity required for Ptl-mediated pertussis toxin secretion. J Bacteriol 184: 2863-2869. Reese, M.G. (2001) Application of a time-delay neural network to promoter annotation in the Drosophila melanogaster genome. Comput Chem 26: 51-56. Russel, M. (1998) Macromolecular assembly and secretion across the bacterial cell envelope: type II protein secretion systems. J Mol Biol 279: 485-499. Sambrook, J., and Russell, D.W. (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press. Schafer, A., Tauch, A., Jager, W., Kalinowski, J., Thierbach, G., and Puhler, A. (1994) Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145: 69-73. Schechter, L.M., Roberts, K.A., Jamir, Y., Alfano, J.R., and Collmer, A. (2004) Pseudomonas syringae type III secretion system targeting signals and novel effectors studied with a Cya translocation reporter. J Bacteriol 186: 543-555. Schechter, L.M., Vencato, M., Jordan, K.L., Schneider, S.E., Schneider, D.J., and Collmer, A. (2006) Multiple approaches to a complete inventory of Pseudomonas syringae pv. tomato DC3000 type III secretion system effector proteins. Mol Plant Microbe Interact 19: 1180-1192. Schesser, K., Frithz-Lindsten, E., and Wolf-Watz, H. (1996) Delineation and mutational analysis of the Yersinia pseudotuberculosis YopE domains which mediate translocation across bacterial and eukaryotic cellular membranes. J Bacteriol 178: 7227-7233. Shan, L., Thara, V.K., Martin, G.B., Zhou, J.M., and Tang, X. (2000) The pseudomonas AvrPto protein is differentially recognized by tomato and tobacco and is localized to the plant plasma membrane. Plant Cell 12: 2323-2338. Simon, R., Priefer, U., and Puhler, A. (1983) A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Bio/Technology 1: 784-791. Studier, F.W., Rosenberg, A.H., Dunn, J.J., and Dubendorff, J.W. (1990) Use of T7 RNA polymerase to direct expression of cloned genes. Methods Enzymol 185: 60-89. Tabor, S., and Richardson, C.C. (1985) A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 82: 1074-1078. Tanaka, R., Taguchi, F., Ichinose, Y., Toyoda, K., Shiraish, T., and Yamada, T. (2001) Effect of Harpin from four pathovars of Pseudomonas syringae on pea defense responses. J. Gen. Plant Pathol. 67: 148-151. Tang, X., Xiao, Y., and Zhou, J.M. (2006) Regulation of the type III secretion system in phytopathogenic bacteria. Mol Plant Microbe Interact 19: 1159-1166. Thompson, J.D., Higgins, D.G., and Gibson, T.J. (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22: 4673-4680. Torres, M.A., Dangl, J.L., and Jones, J.D. (2002) Arabidopsis gp91phox homologues AtrbohD and AtrbohF are required for accumulation of reactive oxygen intermediates in the plant defense response. Proc Natl Acad Sci U S A 99: 517-522. Tsai, D.-Y. (2003) Cloning and characterization of harpin-coding hrpZPsa and hrpWPsa genes of Pseudomonas syringae isolated from carambola. Graduate Institute of Biotechnology, National Chung Hsing University, M.S. thesis. (in Chinese) van Dijk, K., Fouts, D.E., Rehm, A.H., Hill, A.R., Collmer, A., and Alfano, J.R. (1999) The Avr (effector) proteins HrmA (HopPsyA) and AvrPto are secreted in culture from Pseudomonas syringae pathovars via the Hrp (type III) protein secretion system in a temperature- and pH-sensitive manner. J Bacteriol 181: 4790-4797. van Dijk, K., Tam, V.C., Records, A.R., Petnicki-Ocwieja, T., and Alfano, J.R. (2002) The ShcA protein is a molecular chaperone that assists in the secretion of the HopPsyA effector from the type III (Hrp) protein secretion system of Pseudomonas syringae. Mol Microbiol 44: 1469-1481. Wattiau, P., Bernier, B., Deslee, P., Michiels, T., and Cornelis, G.R. (1994) Individual chaperones required for Yop secretion by Yersinia. Proc Natl Acad Sci U S A 91: 10493-10497. Wattiau, P., Woestyn, S., and Cornelis, G.R. (1996) Customized secretion chaperones in pathogenic bacteria. Mol Microbiol 20: 255-262. Wei, C.-F., Kvitko, B.H., Shimizu, R., Crabill, E., Alfano, J.R., Lin, N.-C., Martin, G.B., Huang, H.-C., and Collmer, A. (2007) A Pseudomonas syringae pv. tomato DC3000 mutant lacking the type-III effector HopQ1-1 is able to cause disease in the model plant Nicotiana benthamiana. The Plant Journal. 51: 32-46 Wei, Z.M., Laby, R.J., Zumoff, C.H., Bauer, D.W., He, S.Y., Collmer, A., and Beer, S.V. (1992) Harpin, elicitor of the hypersensitive response produced by the plant pathogen Erwinia amylovora. Science 257: 85-88. Wei, Z.M., and Beer, S.V. (1993) HrpI of Erwinia amylovora functions in secretion of harpin and is a member of a new protein family. J Bacteriol 175: 7958-7967. Wei, Z.M., and Beer, S.V. (1995) hrpL activates Erwinia amylovora hrp gene transcription and is a member of the ECF subfamily of sigma factors. J Bacteriol 177: 6201-6210. Wen, Y., and Huang, Z. (1995) Bacterial leaf spot of Averrhoa carambola. Chinese J. Tropical Crops 16: 65-69. (in Chinese) Wengelnik, K., and Bonas, U. (1996) HrpXv, an AraC-type regulator, activates expression of five of the six loci in the hrp cluster of Xanthomonas campestris pv. vesicatoria. J Bacteriol 178: 3462-3469. Wengelnik, K., Van den Ackerveken, G., and Bonas, U. (1996) HrpG, a key hrp regulatory protein of Xanthomonas campestris pv. vesicatoria is homologous to two-component response regulators. Mol Plant Microbe Interact 9: 704-712. Woestyn, S., Sory, M.P., Boland, A., Lequenne, O., and Cornelis, G.R. (1996) The cytosolic SycE and SycH chaperones of Yersinia protect the region of YopE and YopH involved in translocation across eukaryotic cell membranes. Mol Microbiol 20: 1261-1271. Xiao, Y., Heu, S., Yi, J., Lu, Y., and Hutcheson, S.W. (1994) Identification of a putative alternate sigma factor and characterization of a multicomponent regulatory cascade controlling the expression of Pseudomonas syringae pv. syringae Pss61 hrp and hrmA genes. J Bacteriol 176: 1025-1036. Xiao, Y., and Hutcheson, S.W. (1994) A single promoter sequence recognized by a newly identified alternate sigma factor directs expression of pathogenicity and host range determinants in Pseudomonas syringae. J Bacteriol 176: 3089-3091. Young, G.M., Schmiel, D.H., and Miller, V.L. (1999) A new pathway for the secretion of virulence factors by bacteria: the flagellar export apparatus functions as a protein-secretion system. Proc Natl Acad Sci U S A 96: 6456-6461. Yu, C.-C. (2001) The sequence analysis of conserved effector loci of the Pseudomonas syringae pv. syringae 61 (Pss 61) and secretion of Streptomyces sp. Glucanasse by type III secretion system in Pss 61. Graduate Institute of Agricultural Biotechnology, National Chung Hsing University, M.S. thesis. (in Chinese)
摘要: 
楊桃細菌性斑點病是由Pseudomonas syringae pv. averrhoi (Pav)所引起的病害。此菌為革蘭氏陰性菌,桿狀,在楊桃植株上產生的病徵為葉片上有紫紅色斑點,周圍有明顯黃暈現象,且葉片易黃化脫落。其分子致病機制主要受控於病原島嶼 (Pathogenicity island, Pai)基因序列所轉譯的蛋白質,Pai為一個三組基因群組成的鑲嵌結構,其中hrp/hrc基因組是在不同病原型中具高度保留性的核心區域 (core region),主要形成第三型分泌系統,此分泌系統可將病原菌的effector分泌至寄主細胞內,而在兩側分別為可交換因子區 (exchangeable effector locus, EEL)與保留因子區 (conserved effector locus, CEL)。由楊桃細菌性斑點病菌Pav HL1菌株中選殖到16.7 kb的保留因子區,此區域基因排列組成及序列與P. s. pv. phaseolicola (Pph) 1448A最為相近,其中orf1、avrE、avrF、orf6基因產物為已知或可能是有效蛋白質,而hrpW基因與hopM1、hopAA1基因分別由於產生突變或鹼基缺失導致基因可能無法表現。利用pK18mobsacB為載體及同源重組作用,構築orf1、avrE、avrF及orf6等基因突變株,發現orf1基因缺失會降低Pav引發過敏性反應的能力,顯示Orf1蛋白與病原菌引發過敏性反應有關,而AvrE與AvrF蛋白則與過敏性反應無關;在互補試驗中,發現在質體上表現的Orf6蛋白能抑制過敏性反應的產生。分析各基因突變菌株在寄主楊桃上的生長能力,發現在接種九天後,orf1基因缺失菌株菌量為野生菌株菌量之1/50;avrE或avrF基因缺失菌株菌量均為野生菌株菌量之1/100,但avrF基因缺失於初期菌量的影響較為輕微;而orf6基因缺失菌株降低的菌量與野生菌株無顯著差異。ORF1具有transglycosylase motif,能編碼出肽聚醣水解酶,目前推測其功能應造成病原菌細胞壁鬆散而能在其上構築第三型分泌系統的針狀構造。研究中構築一orf1-FLAG基因,並利用M2單株抗體偵測其所表現的融合蛋白,以探討Orf1蛋白在細胞中的位置,發現Orf1蛋白似乎未被分泌至細胞外。將Orf6表現於帶有Psy 61 hrp/hrc基因組 (pHIR11)的Escherichia coli MC4100中,發現Orf6蛋白可能會經由第三型蛋白分泌系統被分泌至菌體胞外,並能抑制由HopA1所引起的過敏性反應。

Bacterial spot of carambola is caused by Pseudomonas syringae pv. averrhoi (Pav), which is a gram-negative, rod-shaped bacterium. The typical symptoms on leaves are purple spots surrounded by yellow haloes, and the infected leaves turn yellow and fall easily. Pav possesses a Hrp Pathogenicity island (Pai) responsible for pathogenicity on its host and hypersensitive response (HR) on resistant plants. The Hrp Pai consists of three regions: EEL (exchangeable effector locus), hrp/hrc cluster (also called core region) which encodes a type III secretion system (T3SS) that facilitates the effectors to be translocated into host cell, and CEL (conserved effector locus). A 16.7 kb DNA fragment containing CEL was cloned from Pav strain HL1. The DNA sequences of CEL show the highest similarity to the corresponding region of P. s. pv. phaseolicola (Pph) 1448A. Among nine orfs contained in this CEL, orf1, avrE, avrF and orf6 are predicted to be putative effector genes, hrpW carries a nonsense mutation and probably encodes only N-terminal amino acids which possesses the harpin domain, hopM and hopAA1 are both truncated. The mutant strains of orf1, avrE and orf6 were constructed by means of homologous recombination using pK18mobsacB as a vector. Based on the HR elicitation on nonhost tobacco leaves, orf1 mutant elicited the delayed HR, suggesting that Orf1 might be involved in the elicitation of HR. A complementation assay verified that the expression of native orf6 gene in trans can suppress the HR elicitation in nonhost induced by Pav HL1, but AvrE and AvrF are not related to the elicitation of HR. All mutants tested here reduced their ability to grow in host carambola, thus all of them contribute to the proliferation and accumulation in host plant. Orf1 is a transglycosylase-like protein and may have peptidoglycan hydrosylase activity which causes cell leakage and facilitates the assembly of the T3SS. In order to elucidate the cellular location of Orf1, a FLAG tag which can be easily detected by M2 monoclonal antibody in immunoblotting was fused with orf1. A western blot analysis revealed that Orf1-FLAG fusion protein is mainly located in the total cell pellet fraction. By using an E. coli MC4100 (pHIR11) system, it was revealed that Orf6 may act inside plant cells to block the HR elicitation in tobacco by the pHIR11-encoded effector HopA1.
URI: http://hdl.handle.net/11455/36152
其他識別: U0005-2606200712240200
Appears in Collections:生物科技學研究所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.