Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36156
標題: 植物中調控細胞分裂與分化的基因之選殖與功能性分析
Molecular cloning and characterization of genes in regulating cell division and differentiation from various plant species
作者: 宮力仁
Kong, Lih-Ren
關鍵字: late-flowering;阿拉伯芥;fld-2;Zinc finger;EAR domain;AtEPF1;p70s6k;40S ribosomal protein S6;晚開花突變;葉片發育;轉譯調控
出版社: 生物科技學研究所
引用: 第一章 緒言 曾才郁. 2002. 百合中參與調控花朵發育基因及其機制之研究. 國立中興大學農業生物科技學研究所博士論文. Greg G. and Spencer V. M. (2003). 基因體科學入門. 藝軒圖書出版社. Arabidopsis Genome Initiative. (2000). Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408 : 796-815 Angenent, G. C., and Colombo, L. (1996). Molecular control of ovule development. Trends Plant Sci. 1 : 228-232. Becraft, P. W. and Freeling, M. (1994). Genetic analysis of Rough sheath1 developmental mutants of maize. Genetics. 136: 295-311. Blázquez. M. A. (2000). Flower development pathway. Cell Sci. 3547-3548. Bowman, J. L., Smyth, D. R., and Meyerowitz., E. M. (1991). Genetic interaction among floral homeotic genes of Arabidopsis. Development 112 : 1-20. Bowman, J. L., Alvarez, J., Meyerowitz, E. M., and Smyth, D. R. (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting gene. Development 119 : 721-743. Byrne, M. E., Barley, R., Curtis, M., Arroyo, J. M., Dunham, M., Hudson, A. and Martienssen, R. A. (2000). Asymmetric leaves mediates leaf patterning and stem cell function in Arabidopsis. Nature. 408: 967-971. Chan, M. H., G. T. Kim., B.C Kim., J. H. Jun., M. S. Soh., Y. Ueno., Y. Machida., Tsukaya, H. and H. G. Nam. (2003). The BLADE-ON-PETIOLE 1 gene controls leaf pattern formation through the modulation of meristematic activity in Arabidopsis. Development. 130 : 161-172. Chan, M. H., J. H. Jun., Nam, H. G. and J. C. Fletcher. (2004). BLADE-ON-PETIOLE1 encodes a BTB/POZ domain protein required for leaf morphogenesis in Arabidopsis thaliana. Plant Cell Physiol. 45 : 1361-1370. Colombo, L., Franken, J., Koetje, E., van Went, J., Dons, H. J. M., Angenent, G. C. and van Tunen, A. J.(1995). The petunia MADS box gene FBP11 determines ovule identity. Plant Cell 7 : 1859-1868. Colombo, L., Franken, J., Alexander, R., van der Krol, R., Wittich, P. E., Dons, H. J. M. and Angenent, G. C. (1997a). Down regulation of ovule-specific MADS box genes from petunia results in maternally controlled defects in seed development. Plant Cell 9 : 703-715. Colombo, L., van Tunen, A. J., Dons, H. J. M. and Angenent, G. C. (1997b). Molecular control of flower development in Petunia hybrida. Adv. Bot. Res. 26 : 229-250. Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts, K. and Scheres, B. (1993). Cellular organization of the Arabidopsis thaliana root. Development 119 : 71-84 Drews, G. N., Bowman, J. L. and Meyerowitz, E. M. (1991). Negative regulation of the Arabidopsis thaliana gene Agamous by the Apetal2 product. Cell 65 : 991-1002 . Goff, S. A., Ricke, D., Lan, T. H., Presting, G., Wang, R., Dunn, M., Glazebrook, J., Session, A., Oeller, P., Varma, H., Hadley, D., Hutchison, B. P., Zhong, J., Miguel, T., Paszkowski, U., Zhang, S., Colbert, M., Sun W. L., Chen, L., Cooper, B., Park, S., Wood, T. C., Mao, L., Quail, P., Wing, R., Dean, R., Yu, Y., Zharkikh, A., Shen, R., Sahasrabudhe, S., Thomas, A., Cannings, R., Gutin, A., Pruss, D., Reid, J., Tavtigian, S., Mitchell, J., Eldredge, G., Scholl, T., Miller, R. M., Bhatnagar, S., Adey, N., Rubano, T., Tusneem, N., Robinson, R., Feldhaus, J., Macalma, T., Oliphant, A. and Briggs, S. (2002) A draft sequence of the rice genome(Oryza sativa L. ssp. japonica). Science 296: 92-100 Hanks, S. K., Quinn, A. M. and Hunter, T. (1988). The protein kinase family: conserved features and deduced phylogeny of the catalytic domains. Science 241 : 42-52. Hirayama, T. and Oka, A. (1992). Novel protein kinase of Arabidopsis thaliana (APK1) that phosphorylates tyrosine, serine, and threonine. Plant Mol. Biol. 20 : 653-662. Honma, T. and Goto, K. (2001). Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409 : 525-529. Huang, H., Mizukami, Y., Hu, Y. and Ma, H. (1993). Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucl. Acids Res. 21 : 4769-4776. Hwang, I. and Goodman, H. M. (1995). An Arabidopsis thanliana root-specific kinase homolog is induced by dehydration, ABA, and NaCl. Plant J. 8 : 37-43 Ito, T., Takahashi, N., Shimura, Y. and Okada, K. (1997). A serine/threonine protein kinase gene isolated by an in vivo binding procedure using the Arabidopsis floral homeotic gene product, AGAMOUS. Plant Cell Physiol. 38 : 248-258 Iwakawa, H., Ueno, Y., Semiarti, E., Onouchi, H., Kojima, S., Tsukaya, H., Hasebe, M., Soma, T., Ikezaki, M., Machida, C. and Machida, Y. (2002). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol. 43 : 467-478. Jack, T. (2001a). Plant development going MADS. Plant Mol Biol. 46 : 515-520. Jack, T. (2001b). Relearning our ABCs: new twists on an old model. Trends Plant Sci. 6 : 310-316. Jackson, D., Veit, B. and Hake, S. (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405-413. Jofuku, K. D., den Boer, B. G., Montagn, E. M. and Okamuro, J. K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETAL2. Plant Cell 6 : 1211-1225. Jonak, C., H-Bors, E. and Hirt, H. (1995). Inflorescence-specific expression of AtK-1, anovel Arabidopsis thaliana homologue of shaggy/glycogen kinase-3. Plant Mol. Biol. 27 : 217-221. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16 : 111-120. Kvarnheden, A., Tandre, K. and Engstrom, P. (1995). A cdc2 homologue and closely related processed retropseudogenes from Norway spruce. Plant Mol. Biol. 27 : 391-403. Liljegren, S. J., Gustafson-Brown, C., Pinyopich, A., Ditta, G. S. and Yanofsky, M. F. (1999). Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11 : 1007-1018. Lincoln, C., Long, J., Yamaguchi, J., Serikawa, K. and Hake, S. (1994). A Knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6 : 1859-1876. Long, J. A., Moan, E. I., Medford, J. I. and Barton, M. K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the SHOOTMERISTEMLESS gene of Arabidopsis. Science 379 : 66-69. Mandel, M. A., Gustafson-Brown, C., Savidge, B. and Yanofsky, M. F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360 : 273-277. Mandel, M. A. and Yanofsky, M. F. (1995). A gene triggering flower formation in Arabidopsis. Nature 377 : 522-524. Medford, J. I. (1992). Vegetative apical meristems. Plant Cell 7 : 1749-1761. Meyerowitz, E. M. (1997). Genetic control of cell division pattern in developing plants. Cell 88 : 299-308. Norberg M., Holmlund, M. and Nilsoon, O. (2005). The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development. 132 : 2203-2213. Ori, N., Eshed, Y., Chuck, G., Bowman, J. L. and Hake, S. (2000). Mechanisms that control knox gene expression in the Arabidopsis shoot. Development. 127 : 5523-5532. Pelaz, S., Ditta, G. S., Baumann, E., Wisman, E. and Yanofsky, M. F. (2000). B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405 : 200-203. Riechmann, J. L., Krizek, B. A., and Meyerowitz, E. M. (1996). Dimerization specificity of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA, and AGAMOUS. Proc. Natl. Acad. Sci. USA. 93 : 4793-4798. Riechmann, J. L. and Meyerowitz, E. M. (1997). MADS domain proteins in plant development. Biol Chem. 378 : 1079-1101. Riechmann J. L., Heard J., Martin G., Reuber L., Jiang C., Keddie J., Adam L., Pineda O., Ratcliffe O. J., Samaha R. R., Creelman R., Pilgrim M., Broun P., Zhang J. Z., Ghandehari D., Sherman B. K. and Yu G. (2000) Arabidopsis transcription factor: genome-wide comparative analysis among eukaryotes. Science 290: 2105-2110 Roe, J. L., Rivin, C. J., Sessions, R. A., Feldmann, K. A. and Zambryski, P. C. (1993). The Tousled gene in A. thaliana encodes a protein kinase homolog that is required for leaf and flower development. Cell 75 : 939-950. Rounsley, S. D., Ditta, G. S. and Yanofsky, M. F. (1995). Diverse roles for MADS box genes in Arabidopsis development. Plant Cell 7 : 1259-1269. Rubin, G. M., Yandell, M. D., Wortman, J. R., Gabor, M. G. L., Nelson, C. R., Hariharan, I. K., Fortini, M. E., Li, P. W., Apweiler, R., Fleischmann, W., Cherry, J. M., Henikoff, S., Skupski, M. P., Misra, S., Ashburner, M., Birney, E., Boguski M. S., Brody, T., Brokstein, P., Celniker, S. E., Chervitz, S. A., Coates, D., Cravchik, A., Gabrielian, A., Galle, R. F., Gelbart, W. M., George, R. A., Goldstein, L. S., Gong, F., Guan, P., Harris, N. L., Hay, B. A., Hoskins, R. A., Li, J., Li, Z., Hynes, R. O., Jones, S. J., Kuehl, P. M., Lemaitre, B., Littleton, J. T., Morrison, D. K., Mungall, C., O`Farrell, P.H., Pickeral, O. K., Shue, C., Vosshall, L. B., Zhang, J., Zhao, Q., Zheng, X. H. and Lewis, S. (2000) Comparative genomics of the eukaryotes. Science 287: 2204-2215 Schneeberger, R. G., Becraft, P. W., Hake, S. and Freeling, M. (1995). Ectopic expression of the knox homeo box gene rough sheath1 alters cell fate in the maize leaf. Genes Dev. 9 : 2292-2304. Schultz, E. A. and Haughn, G. W. (1993). Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development 119 : 745-765. Schwarz-Sommer, Z., Huijser, P., Nacken, W., Saedler, H. and Sommer, H. (1990). Genetic control of flower development by homeotic genes in Antirrhinum majus. Science 250 : 931-936. Semiarti, E., Ueno, Y., Tsukaya, H., Iwakawa, H., Machida, C. and Machida,Y. (2001). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in leaves. Development. 128 : 1771-1783. Shiraishi, H., Okada, K. and Shimura, Y. (1993). Nucleotide sequences recognized by the AGAMOUS MADS domain of Arabidopsis thaliana in vitro. Plant J. 4 : 385-398. Shiu, S. H. and Bleecker, A. B. (2001). Receptor-like kinases from Arabidopsis form a monophyletic gene family related to animal receptor kinases. Proc. Natl. Acad. Sci. U. S. A. 98 : 10763-10768. Shore, P. and Sharrocks, A.D. (1995). The MADS-box family of transcription factors. Eur J Biochem. 229 : 1-13. Sommer, H., Beltrán, J. P., Huijser, P., Pape, H., Lönning, W. E., Saedler, H. and Schwarz, S. Z. (1990). Deficiens, a homeotic gene involved in the control of flower morphogenesis in Antirrhinum majus: the protein shows homology to transcription factors. EMBO J. 9 : 605-613. Steeves, T. A. and Sussex, I. M. (1989). Patterns in Plant Development. Cambridge: Cambridge University Press. Sterck, L., Rombauts, S., Vandepoele, K., Rouzé, P. and Peer, Y. V. (2007). How many genes are there in plants(… and why are they there)? Curr. Opin. Plant. Sci. 10: 199-203 Tamaoki, M., Kusaba, S., Kano, M. Y. and Matsuoka, M. (1997). Ectopic expression of a tobacco homeobox gene, NTH15, dramatically alters leaf morphology and hormone levels in transgenic tobacco. Plant Cell Physiol. 38 : 917-927. Theißen, G., Kim, J. and Saedler, H. (1996). Classification and phylogeny of the MADS-box gene subfamilies in the morphological evolution of eukaryotes. J.Mol.Evol. 43 : 484-516. Theißen, G., Becker, A., Rosa, A. D., Kanno, A., Kim, J. T., Münster, T., Winter, K. U. and Saedler, H. (2000). A short history of MADS-box genes in plant. Plant Mol. Biol. 42 : 115-149. Theißen, G. (2001). Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol. 4 : 75-85. Theißen, G. and Saedler, H. (2001). Floral quartets. Nature 409 : 469-471. Thummler, F., Kirchner, M., Teuber, R. and Dittrich, P. (1995). Differential accumulation of the transcripts of 22 novel protein kinase genes in Arabidopsis thaliana. Plant Mol. Biol. 29 : 551-565. Tilly, J.J., Allen, D.W. and Jack, T. (1998). The CarG boxes in the promoter of the Arabidopsis floral organ identity gene APETALA3 mediate diverse regulatory effects. Development 125 : 1647-1657. Timmermans, M. C., Hudson, A., Becraft, P. W. and Nelson, T. (1999). ROUGH SHEATH2: a Myb protein that represses knox homeobox genes in maize lateral organ primordia. Science. 284 : 151-153. Torii, K. U., Mitsukawa, N., Oosumi, T., Matsuura, Y., Yokoyama, R., Whittier, R. F. and Komeda, Y. (1996). The Arabidopsis ERECTA gene encodes a putative receptor protein kinase with extracellular leucine-rich repeats. Plant Cell 8 : 735-746. Tsiantis, M., Schneeberger, R., Golz, J. F., Freeling, M. and Langdale, J. A. (1999). The maize rough sheath2 gene and leaf development programs in monocot and dicot plants. Science. 284 : 154-156. van den Berg, C., Willemsen, V., Hendrinks, G., Weisbeek, P. and Scheres, B. (1997). Short-range control of cell differentiation in the Arabidopsis root meristem. Nature. 390 : 287-289 Waites, R., Selvadurai, H. R. N., Oliver, I. R. and Hudson, A. (1998). The PHANTASTICA gene encodes a MYB transcription factor involved in growth and dorsoventrality of lateral organs in Antirrhinum. Cell. 93 : 779-789. Weigel, D. and Meyerowitz, E. M. (1994). The ABCs of floral homeotic genes. Cell 78: 203-209. Yu., Hu. S., Wang, J., Wong, G. K., Li, S., Liu, B., Deng, Y., Dai, L., Zhou, Y., Zhang, X., Cao, M ., Liu, J., Sun, J., Tang, J., Chen, Y., Huang, X., Lin, W., Ye, C., Tong, W., Cong, L.,Geng, J., Han, Y., Li, L., Li, W., Hu, G., Huang, X., Li, W., Li, J., Liu, Z., Li, L., Liu, J., Qi, Q., Liu, J., Li, L., Li, T., Wang, X., Lu, H., Wu, T., Zhu, M., Ni, P., Han, H., Dong, W., Ren, X., Feng, X., Cui, P., Li, X., Wang, H., Xu, X., Zhai, W., Xu, Z., Zhang, J., He, S., Zhang, J., Xu, J., Zhang, K., Zheng, X., Dong, J., Zeng, W., Tao, L., Ye, J., Tan, J., Ren, X., Chen, X., He, J., Liu, D., Tian, W., Tian, C., Xia, H., Bao, Q., Li, G., Gao, H., Gao, T., Wang, J., Liu, S., Yang, J., Zhang, G., Xiong, Y., Li, Z., Mao, L., Zhou, C., Zhu, Z., Chen, R., Hao, B., Zheng, W., Chen, S., Guo, W., Li, G., Liu, S., Tao, M., Wang, J., Zhu, L., Yuan, L. and Yang, H. (2002) A draft sequence of the rice genome (Oryza staive L. ssp. indica). Science 296: 79-92. 第二章 開花時間相關基因FLD之染色體定位與分子選殖 周明倫. 2000. 擬南芥中調控發育時期轉換相關基因之遺傳探討及分子選殖. 國立中興大學農業生物科技學研究所博士論文. 薛聰賢. 2003. 養蘭不難. 台灣普綠有限公司出版部. 林瑞松. 2005. 文心蘭栽培生理與產品處理. 國立中興大學農業暨自然資源學院推廣叢書950001號. Alvarezm J., Guli, C. L., Yu, X. H., and Smyth, D. R. (1992). Terminal flower: a gene affecting inflorescence development in Arabidopsis thaliana. Plant J. 2 : 103-116. Amasino, R. M. (1996). Control of flowering time in plant. Curr. Opinons Genet. Dev. 6 : 480-487. Araki, T., and Komeda, Y. (1993). Analysis of the role of the late-flowering locus, GI, in the flowering of Arabidopsis thaliana. Plant J. 3 : 231-239. Aukerman, M. J., Lee, I., Weigel, D., and Amasino, R. M. (1999). The Arabidopsis flowering-time gene LUMINIDEPENDENS is expressed primarily in regions of cell proliferation and encodes a nuclear protein that regulates LEAFY expression. Plant J. 18 : 195-203. Ausin, I., Alonso B. C., Jarillo JA, Ruiz G. L. and Martinez Z. J. M. (2004). Regulation of flowering time by FVE, a retinoblastoma-associated protein. Nat. Genet. 36 : 162-166. Bowman, J. L., Alvarez, J., Meyerowitz, E. M. and Smyth, D. R. (1993). Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119 : 721-743. Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 72 : 284-285. Burn, J. E., Bagnall, D. J., Metgzer, J. D., Dennis, E. S., and Peacock, W. J. (1993). DNA methylation, vernalization, and the initiation of flowering. Proc. Natl. Acad. Sci. USA 90 : 287-291. Chang, C., Bowman, J. L., Dejohn, A.W., Lander, E. S., and Meyerowitz, E. M. (1988). Restriction fragment length polymorphism linkage map for Arabidopsis thaliana. Proc. Natl Acad. Sci. USA 85 : 6856-6860. Clarke, J. H., and Dean, C. (1994). Mapping FRI, a locus controlling flowering time and vernalization response. Mol. Gen. Genet. 242 : 81-89. Clarke, J. H., Mithen, R., Brown, J. K. M., and Dean, C. (1995). QTL analysis of flowering time in Arabidopsis thaliana. Mol. Gen. Genet. 248 : 278-286 Coupland, G. (1995). Genetic and environmental control of flowering time in Arabidopsis. Trends Genet. 11 : 393-397. Eimert, K., Wang, S-W., Lue, W-L., and Chen, J. (1995). Monogenic recessive mutations causing both late floral initiation and excess starch accumulation in Arabidopsis. Plant Cell 7 : 1703-1712. Fabri, C. O. and Schaffner, A. R. (1994). An Arabidopsis thaliana RFLP mapping set to localize mutations to chromosomal regions. Plant J. 5 : 149-156. Fowler, S., Lee, K., Onouchi, H., Samach, A., Richardson, K., Morris, B., Coupland, G., and Putterill, J. (1999). GIGANTEA: a circadian clock-controlled gene that regulates photoperiodic flowering in Arabidopsis and encodes a protein with several possible membrane-spanning domains. EMBO J. 18 : 4679-4688. Fujita, M., Fujita, Y., Maruyama, K., Seki, M., Hiratsu, K., Ohme, T. M., Tran, L.S., Yamaguchi, S. K. and Shinozaki, K. (2004). A dehydration-induced NAC protein, RD26, is involved in a novel ABA-dependent stress-signaling pathway. Plant J. 39 : 863-76. Goto, K and Meyerowitz, E. M. (1994). Function and regulation of the Arabidopsis floral homeotic gene PISTILLATA. Genes Dev. 8 : 1548-1560. Guo, H., Yang, H., Mockler, T. C., and Lin, C. (1998). Regulation of flowering time by Arabidopsis photoreceptors. Science 279 : 1360-1363. Hackett, W. P. (1985). Juvenility, maturation and rejuvenation in woody plants. Horticultural Reviews 7 : 109-155. Hanzawa Y., Money T. and Bradley D.. (2005) A single amino acid converts a repressor to an activator of flowering. Proc. Natl. Acad. Sci. USA 102 : 7748-7753. He, Y., Michael, S. D. and Amasino, R. M. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science 302 : 1751-1754. Jack, T., Brockman, L. L., and Meyerowitz, E. M. (1992). The homeotic gene APETALA3 of Arabidopsis thaliana encodes a MADS box and is expressed in petals and stamens. Cell 68 : 683-697. Jofuku, K. D., den Boer, B. G. W., van Montagu, M., and Okamuro, J. K. (1994). Control of Arabidopsis flower and seed development by the homeotic gene APETALA2. Plant Cell 6 : 1211-1225. Kardailsky, I., Shukla, V. K., Ahn, J. H., Dagenais, N., Christensen, S. K., Nguyen, J. T., Chory, J., Harrison, M. J., Weigel, D. (1999). Activation tagging of the floral inducer FT. Science 286 : 1962-1965. Karlovska, V. (1974). Genotypic control of the speed of development in Arabidopsis thaliana (L) Heyhn. Lines obtained from natural populations. Biol. Plantar 16 : 107-117. Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science 286 : 1960-1962. Koornneef, M., Hanhart, C. J., and van der Veen, J. H. (1991). A genetic and physiological analysis of late flowering mutants in Arabidopsis thaliana. Mol. Gen. Genet. 229 : 57-66. Koornneef, M., Alonso-Blanco, Peeters, A. J. and Soppe, W. (1998). Genetic control of flowering time in Arabidopsis. Annu. Rev. Plant Physiol. Plant Mol. Biol. 49 : 345-370. Koornneef, M., and Stam, P. (1992). Genetic analysis, in Method in Arabidopsis Research (Koncz, C., Chua, N. H., and Schell, J., eds.) World Scientific, Singapore. Kosambi, D. D. (1944). The estimation of map distances from recombination values. Ann Eugen. 12 : 172-175. Lee, I., Bleecker, A., and Amasino, R. M. (1993). Analysis of naturally occurring late flowering in Arabidopsis thaliana. Mol. Gen. Genet. 237 : 171-176. Lee, I., Aukerman, M. J., Gore, S. L., Lohman, K. N., Michaels, S. D., Weaver, L. M., John, M. C., Feldmann, K. A., and Amasino, R. M. (1994). Isolation of LUMINIDEPENDENS: a gene involved in the control of flowering time in Arabidopsis. Plant Cell 6 : 75-83. Levy, Y. Y., and Dean, C. (1998). The transition to flowering. Plant Cell 10 : 1973-1990. Lim, M.H., Kim, J., Kim, Y. S., Chung, K. S., Seo, Y. H., Lee, I., Kim, J., Hong, C.B., Kim, H. J. and Park, C. M. (2004). A new Arabidopsis gene, FLK, encodes an RNA binding protein with K homology motifs and regulates flowering time via FLOWERING LOCUS C. 16 : 731-740. Macknight, R., Bancroft, I., Page, T., Lister, C., Schmidt, R., Love, K., Westphal, L., Murphy, G., Sherson, S., Cobbett, C., and Dean, C. (1997). FCA, a gene controlling flowering time in Arabidopsis, encodes a protein containing RNA-binding domain. Cell 89 : 737-745. Mandel, M. A., Gustafson, B. C., Savidge, B., and Yanofsky, M. F. (1992). Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360 : 273-277. Martinez-Zapater, J. M., Coupland, G., Dean, C., and Koornneef, M. (1994). The transition to flowering in Arabidopsis. In “Arabidopsis” (C. R. Somerville and E. M. Meyerowitz, Eds.), pp. 403-434. Cold Spring Harbor Laboratory Press, New York. Martinez-Zapater, J. M., Jarillo, J. A., Cruz-Alvarez, M., Roldan, M., and Salinas, J. (1995). Arabidopsis late-flowering fve mutants are affected in both vegetative and reproductive development. Plant J. 7 : 543-551. Medford, J. I. Behringer, F. J., Callos, J. D., and Feldmann, K. A. (1992). Normal and adnormal development in the Arabidopsis vegetative shoot apex. Plant Cell 4 : 631-643. Nam, H. G., Giraudat, J., den Boerm, B., Moonan, F., Loos, W. D. B., Hauge, B. M., and Goodman, H. M. (1989). Restriction fragment length polymorphism map of Arabidopsis. Plant Cell 1 : 699-705. Napp-Zinn, K. (1985). Arabidopsis thaliana. In “Handbook of flowering” (A. H. Halevy, Eds.), pp. 492-503. CRC Press, Boca Raton. Noh, B., Lee, S.H., Kim, H.J., Yi, G., Shin, E.A., Lee, M., Jung, K.J., Doyle, M.R., Amasino, R.M. and Noh, Y.S. (2004). Divergent roles of a pair of homologous jumonji/zinc-finger-class transcription factor proteins in the regulation of Arabidopsis flowering time. Plant Cell 16 : 2601-2613 Page, T., Macknight, R., Yang, C-H. and Dean, C. (1999). Genetic interactions of the Arabidopsis flowering time gene FCA, with genes regulating floral initiation. Plant J. 17 : 231-239. Park, D. H., Somers, D. E., Kim, Y. S., Choy, Y. H., Lim, H. K., Soh, M. S., Kim, H. J., Kay, S. A., and Nam, H. G. (1999). Control of circadian rhythms and photoperiodic flowering by the Arabidopsis GIGANTEA gene. Science 285 : 1579-1582. Poethig, R. S. (1990). Phase change and the regulation of shoot morphogenesis in plants. Science 150 : 923-930. Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80 : 847-857. Ruiz-Garcia, L., Madueno, F., Wilkinson, M., Haughn, G., Salinas, J., and Martinez-Zapater, J. M. (1997). Different roles of flowering time genes in the activation of floral initiation genes in Arabidopsis. Plant Cell 9 : 1921-1934. Sanda, S. L., and Amasino, R. M. (1996). Ecotype-specific expression of a flowering mutant phenotype in Arabidopsis thaliana. Plant Physiol. 111 : 641-744. Schomburg, F.M., Patton, D.A., Meinke, D.W. and Amasino, R. M. (2001). FPA, a gene involved in floral induction in Arabidopsis, encodes a protein containing RNA-recognition motifs. Plant Cell 13 : 1427-1436. Schultz, E. A., and Haughn, G. W. (1993). Genetic analysis of the floral initiation process (FLIP) in Arabidopsis. Development 119 : 745-765. Shannon, S., and Meeks-Wanger, D. R. (1991). A mutation in the Arabidopsis TFL1 gene affects inflorescence meristem development. Plant Cell 3 : 877-892. Shannon, S., and Meeks-Wanger, D. R. (1993). Genetic interactions that regulate inflorescence development in Arabidopsis. Plant Cell 5 : 639-655. Simon, R., Igeno, M. I., and Coupland, G. (1996). Activation of floral meristem identity genes in Arabidopsis. Nature 384 : 59-62. Simpson, G. G., Dijkwel, P. P., Quesada, V., Henderson, I. and Dean, C. (2003). FY is an RNA 3'' end-processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113 : 777-787. Sung, Z. R., Belachew, A., Bai, S., and Bertrand-Garcia, R. (1992). EMF, an Arabidopsis gene required for vegetative shoot development. Science 258 : 1645-1647. Tran, L. S., Nakashima, K., Sakuma, Y., Simpson, S. D., Fujita, Y., Maruyama, K., Fujita, M., Seki, M., Shinozaki, K. and Yamaguchi, S. K. (2004). Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16 : 2481-98. Weigel, D., and Nilsson, O. (1995). A developmental switch sufficient for flower initiation in diverse plants. Nature 377 : 495-500. Wilson, R. N., Heckman, J. W., and Somerville, C. R. (1992). Gibberellin is required for flowering in Arabidopsis thaliana under short days. Plant Physiol. 100 : 403-408. Yang, C-H., Cheng, L-J., and Sung, Z. R. (1995). Genetic regulation of shoot development in Arabidopsis: the role of EMF genes. Dev. Biol. 169 : 421-435. Yanofsky, M. F., Ma, H., Bowman, J. L., Drews, G. N., Feldmann, K. A., and Meyerowitz, E. M. (1990). The protein encoded by the Arabidopsis homeotic gene AGAMOUS resembles transcription factors. Nature 346 : 35-39. Yusuke, S., Shingo, H., Junko, K., Ko, S. and Katsura, I. (2000). Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J. 23 : 319-327 Zagotta, M. T., Hicks, K. A., Jacobs, C., Young, J. C., Hangarter, R. P., and Meeks-Wagner, R. (1996). The Arabidopsis ELF3 gene regulates vegetative photomorphogenesis and the photoperiodic induction of flowering. Plant J. 10 : 691-702. Zagotta, M. T., Shannon, S., Jacobs, C., and Meeks-Wagner, R. (1992). Early-flowering mutants of Arabidopsis thaliana. Aust. J. Plant Physiol. 19 : 411-418. 第三章 阿拉伯芥中參與葉型發育之EPF基因之選殖與分析 Bateman, A., Coin, L., Durbin, R., Finn, R.D., Hollich, V., Griffiths, J. S., Khanna, A., Marshall, M., Moxon, S., Sonnhammer, E. L. L., Studholme, D. J., Yeats, C. and Eddy, S. R., (2004). The Pfam protein families database. Nucleic Acids Res. 32 Database issue: D138-D141. Bechtold, N., Ellis, J. and Pelletier, G. (1993). In planta Agrobacterium-mediated gene transfer by infiltration of adult Arabidopsis thaliana plants. C. R. Acad. Sci. Ser. III Sci. Vie 316: 1194-1199. Becraft, P. W. and Freeling, M. (1994). Genetic analysis of Rough sheath1 developmental mutants of maize. Genetics 136: 295-311. Bohm, S., Frishman, D. and Mewes, H. W. (1997). Variations of the C2H2 zinc finger motif in the yeast genome and classification of yeast zinc finger proteins. Nucleic Acids Res. 25: 2464-2469. Boutry, M. and Chua, N. H. (1985). A nuclear gene encoding the beta subunit of the mitochondrial ATP synthase in Nicotiana plumbaginifolia. EMBO J. 4: 2159-2165. Byrne, M. E., Barley, R., Curtis, M., Arroyo, J. M., Dunham, M., Hudson, A and Martienssen, R. A. (2000). Asymmetric leaves mediates leaf patterning and stem cell function in Arabidopsis. Nature 408: 967-971. Chan, M. H., Kim, G. T., Kim, B.C., Jun, J. H., Soh, M. S., Ueno, Y., Machida, Y., Tsukaya, H. and Nam, H. G. (2003). The BLADE-ON-PETIOLE 1 gene controls leaf pattern formation through the modulation of meristematic activity in Arabidopsis. Development 130 : 161-172. Chan, M. H., Jun, J. H. Nam, H. G. and Fletcher, J. C. (2004). BLADE-ON-PETIOLE1 encodes a BTB/POZ domain protein required for leaf morphogenesis in Arabidopsis thaliana. Plant Cell Physiol. 45 : 1361-1370. Chung, H. R., Schafer, U., Jackle, H. and Bohm, S. (2002). Genomic expansion and clustering of ZAD-containing C2H2 zinc-finger genes in Drosophila. EMBO reports 3 : 1158-1162. Desjarlais, J. R. and Berg, J. M. (1992). Toward rules relating zinc finger protein sequences and DNA binding site preferences. Proc. Natl. Acad. Sci. USA 89 : 7345-7349. Dolan, L., Janmaat, K., Willemsen, V., Linstead, P., Poethig, S., Roberts, K. and Scheres, B. (1993). Cellular organization of the Arabidopsis thaliana root. Development 119 : 71-84 Englbrecht, C. C., Schoof, H. and Bohm, S. (2004). Conservation, diversification and expansion of C2H2 zinc finger proteins in the Arabidopsis thaliana genome. BMC Genomics 5 : 39-55 Hiratsu, K., Ohta, M., Matsui, K. and Ohme-Takagi, M. (2002). The SUPERMAN protein is an active repressor whose carboxy-terminal repression domain is required for the development of normal flowers. FEBS Lett. 514 : 351-354. Iwakawa, H., Ueno, Y., Semiarti, E., Onouchi, H., Kojima, S., Tsukaya, H., Hasebe, M., Soma, T., Ikezaki, M., Machida, C. and Machida, Y. (2002). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana, required for formation of a symmetric flat leaf lamina, encodes a member of a novel family of proteins characterized by cysteine repeats and a leucine zipper. Plant Cell Physiol. 43 : 467-478. Jackson, D., Veit, B. and Hake, S. (1994). Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120: 405-413. Kimura, M. (1980). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J. Mol. Evol. 16 : 111-120. Kuhn, C. and Frommer, W. B. (1995). A novel zinc finger protein encoded by a couch potato homologue from Solanum tuberosum enables a sucrose transport-deficient yeast strain to grow on sucrose. Mol. Gen. Genet. 247 : 759-763. Lincoln, C., Long, J., Yamaguchi, J., Serikawa, K. and Hake, S. (1994). A Knotted1-like homeobox gene in Arabidopsis is expressed in the vegetative meristem and dramatically alters leaf morphology when overexpressed in transgenic plants. Plant Cell 6 : 1859-1876. Long, J. A., Moan, E. I., Medford, J. I. and Barton, M. K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the SHOOTMERISTEMLESS gene of Arabidopsis. Science 379 : 66-69. Medford, J.I. (1992). Vegetative apical meristems. Plant Cell 7 : 1749-1761. Meyerowitz, E. M. (1997). Genetic control of cell division pattern in developing plants. Cell 88 : 299-308. Murashige, T. and Skoog, F. (1962). A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15 : 473-479. Nardelli, J., Gibson, T. J., Vesque, C. and Charnay, P. (1991). Base sequence discrimination by zinc-finger DNA-binding domains. Nature. 349 : 175-178. Norberg, M., Holmlund, M. and Nilsoon, O. (2005). The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development 132 : 2203-2213. Ohta, M., Matsui, K., Hiratsu, K., Shinshi, H. and Ohme-Takagi, M. (2001). Repression domains of class II ERF transcriptional repressors share an essential motif for active repression. Plant Cell 13 : 1959-1968. Ori, N., Eshed, Y., Chuck, G., Bowman, J. L. and Hake, S. (2000). Mechanisms that control knox gene expression in the Arabidopsis shoot. Development 127 : 5523-5532. Pavletich, N. P. and Pabo, C. O. (1993). Crystal structure of a five-finger GLI-DNA complex: new perspectives on zinc fingers. Science 261 : 1701-1707. Sakai, H., Medrano, L. J. and Meyerowitz, E. M. (1995). Role of SUPERMAN in maintaining Arabidopsis floral whorl boundaries. Nature 378 : 199-203. Sakamoto, A., Minami, M., Huh, G. H. and Iwabuchi, M. (1993). The putative zinc-finger protein WZF1 interacts with a cis-acting element of wheat histone genes. Eur. J. Biochem. 217 : 1049-56. Sakamoto, H., Maruyama, K., Sakuma, Y., Meshi, T., Iwabuchi, M., Shinozaki, K. and Yamaguchi, S. K. (2004). Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, and high-salinity stress conditions. Plant Physiol. 136 : 2734-46. Schneeberger, R. G., Becraft, P. W., Hake, S. and Freeling, M. (1995). Ectopic expression of the knox homeo box gene rough sheath1 alters cell fate in the maize leaf. Genes Dev. 9 : 2292-2304. Semiarti, E., Ueno, Y., Tsukaya, H., Iwakawa, H., Machida, C. and Machida,Y. (2001). The ASYMMETRIC LEAVES2 gene of Arabidopsis thaliana regulates formation of a symmetric lamina, establishment of venation and repression of meristem-related homeobox genes in l
摘要: 
fld-2為一個由EMS突變劑誘變而來的晚開花突變。FLD基因位於第三條染色體上端約13cM的位置,介於g5970到Athch1b之間。此區域含有F13M14、T7M13、F9F8、F11B9 等四個BAC clones。透過(1) subcloned這四個BAC clones來互補fld-2突變株,並觀察轉殖株之開花時間,(2)觀察位於g5970到Athch1b之間的T-DNA tagged lines的開花時間有無延後,(3)以proteomic approach比較在野生型阿拉伯芥與fld-2晚開花突變種之間有無差異,(4)比較特定基因之序列在野生型阿拉伯芥與fld-2晚開花突變種中有無差異等四種方式來選殖FLD基因。FLD基因的確實位置是F13M14.34(At3g10390),其含有兩個exons,可轉譯出含789個氨基酸之蛋白質。FLD在靠近N端的位置含有屬於SWIRN(SWI3p、Rsc8p以及Moira)的domain,與protein-protein interaction有關。FLD含有屬於polyamine oxidase的domain,與chromatin的deacetylation有關。fld-2突變體的突變點是在2149 bp的位置由C變成T,造成Glutamic acid變成stop coden而提早終止轉譯。FLD之mRNA在不同天數之植株以及不同器官中均有表現,僅有表現量高低的差異。其在花軸與根部表現量最低,在營養葉與托葉表現量中等,而在16及24天大之全株植物樣本以及花苞中有最高的表現量。本研究並進行其他植物之FLD同源基因選殖,結果選殖出文心蘭的OnFLD、蝴蝶蘭的PeFLD以及青花菜的BoFLD。(第二章)
本實驗另進行阿拉伯芥AtEPF1基因之選殖與分析。AtEPF1為Cys2/His2型的Zinc finger基因,其蛋白質與矮牽牛中的EPF1有34%的相同性與45%的相似性。AtEPF1具有專屬於EPF family的完整的保守序列CX2CX3FX5LX2HX3H,以及屬於Cys2/His2 ZFP的核心序列QALGGH。除了zinc-finger motifs,AtEPF1的C端中還帶有類似於EAR (ERF-associated amphiphilic repression)的domain。AtEPF1在花苞中表現量最高,在24天大的seedling中表現量較低,在8天、16天大的seedling以及rosette leave中則表現量極低。在不同大小的花苞中,AtEPF1只表現在大花苞及全開的花,在小花苞及中花苞則無任何表現量。35S::AtEPF1之轉基因阿拉伯芥,在外觀上可觀察到葉片異常突出且捲曲及植株矮化的現象。透過觀察AtEPF1在C端外加mGFP後於細胞內所在的位置,發現AtEPF1是集中於細胞核的位置,因此可以肯定AtEPF1具有進入細胞核的能力。進一步分析發現,AtEPF1可能是透過對BOP2基因進行負調控,進而影響到分生組織的生長,隨後再影響到葉片的發育。(第三章)
p70 ribosomal S6 kinase (p70s6k) 透過phosphorylated S6 蛋白質進而調控5''TOP mRNAs 之轉譯及細胞周期之進行。本研究對阿拉伯芥中的p70S6K (ATPK6與ATPK19)及40S ribosomal protein S6 (AtS61與AtS62)基因進行選殖及分析。ATPK6的mRNA主要表現在16天大之全株植物、托葉及花苞,在營養葉及花軸只有微弱的表現量。ATPK19的mRNA主要表現在托葉及花軸,在營養葉及花苞只有微弱的表現量。AtS61的mRNA在各個部位均有表現,只是在營養葉及花軸的表現量較弱。AtS62的mRNA在各個部位均有表現,且彼此間表現量的差異不大。在轉殖35S::ATPK19、35S::AtS61或35S::AtS62之阿拉伯芥中,可觀察到花瓣與雄蕊在發育時因無法正常伸長,結果造成受孕困難,果莢發育不完全。在轉殖35S::AtS61 antisense之阿拉伯芥中,觀察到外觀較野生種阿拉伯芥來的矮小,嚴重者甚至小至十倍以上。透過分析受到IAA刺激的阿拉伯芥花苞中的5''TOP mRNA表現量,發現AP3、PI應該是直接受到p70S6K與S6之調控,而NAP是因為AP3、PI表現量的提昇而間接受到影響。利用PCR的方式來測試AP3與PI的轉錄起始點,發現AP3與PI的轉錄起始點應該是位於5’-UTR中的polypyrimidine sequence的外側。(第四章)

fld-2 mutant, significantly delayed flowering, was isolated from Arabidopsis. FLD was mapped on top arm of chromosome 3 between molecular markers g5970 and Athchlb. Four BAC clones in this region were subcloned for further complementation test. T-DNA tagged lines for genes in this region were obtained and phenotype analyzed. A proteomic approach was also applied to analyze the protein expression profiling in wild-type plants and fld-2 mutant. FLD is locus At3g10390 that consists of two exons and encodes a protein of 789 amino acid residues. FLD contain a region referred to as a SWI3p, Rsc8p, and Moira (SWIRM) domain in the N-terminal region that involved in protein-protein interaction. FLD also contain a polyamine oxidase domain that involved in chromatin deacetylation. A point mutation (C to T) that converts Glu716 (CAG) into a premature stop codon (TAG) was found in fld-2 mutant. FLD was expressed in all organs and tissue tested. Homologues of FLD were cloned from Oncidium Gower Ramsey、Phalaenopsis amabilis var. formosana and Brassica oleracea var. italica. (Chapter 2)
AtEPF1, showed high homology to the EPF family gene, was isolated and characterized from Arabidopsis. AtEPF1 showed high sequence identity to Petunia EPF1. A conserved sequence containing a core QALGGH motif identified in the Cys2/His2 zinc finger region of the AtEPF1 was present in EPF family genes. Besides, AtEPF1 contain of an amphiphilic amino-acid sequence similar to the EAR motif in its C-terminal region. AtEPF1 mRNA was detected in floral buds as well as in 24day-old seedling. Interestingly, in floral buds, AtEPF1 only expressed in mature floral buds and open flowers. Ectopic expression of AtEPF1 in transgenic Arabidopsis plants showed novel phenotypes by producing ectopic outgrew and curled rosette leaves. Further analysis indicated that AtEPF1 proteins were able to enter nucleus. These results indicated that AtEPF1 may play a role in regulating meristematic activity in the embryo development or early stage of the leaf development by modulating expression of BOP2 gene. (Chapter 3)
S6 protein phosphorylated by p70 ribosomal S6 kinase (p70s6k) signaling pathway plays a key role in regulating cell cycle by translationally regulating specific 5''TOP mRNAs. In this study, p70S6K (ATPK6、ATPK19) and 40S ribosomal protein S6 (AtS61、AtS62) genes were cloned and characterized from Arabidopsis. Ectopically expressed ATPK19, AtS61 and AtS62 genes caused abnormal flower development with short petals and stamens in transgenic Arabidopsis plants. Ectopically expressing antisense of AtS61 caused a severe reduction (more than 10 times) in plant size in transgenic plants. Further sequence analysis was used to identify putative 5''TOP mRNAs regulated by p70S6K signaling pathway especially for genes involving in petal and stamen development such as AP3 and PI. (Chapter 4)
URI: http://hdl.handle.net/11455/36156
其他識別: U0005-2708200708160400
Appears in Collections:生物科技學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.