Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36157
標題: 探討阿拉伯芥中E3 RING finger基因與文心蘭中CONSTANS (CO)-like基因調控植物發育及開花之特性
Characterization of an Arabidopsis E3 RING finger gene and an Orichid (Oncidium Gower Ramsey) CONSTANS (CO)-like gene in regulating plant development and flowering
作者: 郭家緯
Kao, Chai-Wei
關鍵字: Arabidopsis;阿拉伯芥;Oncidium Gower Ramsey;E. grandiflorum;ubiquitin;flowering gene;CONSTANS-like;RING5;文心蘭;洋桔梗;泛素;開花基因;CONSTANS-like基因;RING5基因
出版社: 生物科技學研究所
引用: 參考文獻 施靜芳(2004) Functional analysis and the application of NAC-like genes and GIGANTEA (GI) orthologues in regulating meristematic activity, flowering and senescence in plants. 國立中興大學生物科技研究所碩士論文。 廖珮君(2004) Characterization and functional analysis of genes regulating cell division and differentiation in Arabidopsis. 國立中興大學生物科技研究所碩士論文。 欒乃勳(2006) Molecular cloning and functional analysis of GIGANTEA (GI) orthologues from fern Adiantum capillus-venen and NAC-like genes from Arabidopsis. 國立中興大學生物科技研究所碩士論文。 Aida, M., Ishida, T., Fukaki, H., Fujisawa, H., and Tasaka, M. (1997). Genes involved in organ separation in Arabidopsis: an analysis of the cup-shaped cotyledon mutant. Plant Cell 9, 841-857. Azevedo, C., Santos-Rosa, M.J., and Shirasu, K. (2001). The U-box protein family in plants. Trends in plant science 6, 354-358. Bachmair, A., Novatchkova, M., Potuschak, T., and Eisenhaber, F. (2001). Ubiquitylation in plants: a post-genomic look at a post-translational modification. Trends in plant science 6, 463-470. Bates, P.W., and Vierstra, R.D. (1999). UPL1 and 2, two 405 kDa ubiquitin-protein ligases from Arabidopsis thaliana related to the HECT-domain protein family. Plant J 20, 183-195. Chandu, D. and Nandi, D. (2002). From proteins to peptides to amino acids: comparative genomics of enzymes involved in downstream events during cytosolic protein degradation. Appl. Genom. Proteom. 4, 235–252. Chandu, D. and Nandi, D. (2004). Comparative genomics and functional roles of the ATP-dependent proteases Lon and Clp during cytosolic protein degradation; Res. Microbiol. 155, 710–719. Chattopadhyay, S., Ang, L.H., Puente, P., Deng, X.W., and Wei, N. (1998). Arabidopsis bZIP protein HY5 directly interacts with light-responsive promoters in mediating light control of gene expression. Plant Cell 10, 673-683. Endrizzi, K., Moussian, B., Haecker, A., Levin, J.Z., and Laux, T. (1996). The SHOOT MERISTEMLESS gene is required for maintenance of undifferentiated cells in Arabidopsis shoot and floral meristems and acts at a different regulatory level than the meristem genes WUSCHEL and ZWILLE. Plant J 10, 967-979. Fu, H., Reis, N., Lee, Y., Glickman, M.H., and Vierstra, R.D. (2001). Subunit interaction maps for the regulatory particle of the 26S proteasome and the COP9 signalosome. The EMBO J 20, 7096-7107. Gagne, J.M., Downes, B.P., Shiu, S.H., Durski, A.M., and Vierstra, R.D. (2002). The F-box subunit of the SCF E3 complex is encoded by a diverse superfamily of genes in Arabidopsis. PNAS. 99, 11519-11524. Glickman, M.H. (2000). Getting in and out of the proteasome. Seminars in cell & developmental biology 11, 149-158. Greve, K., Cour, T. L., Jensen, M. K., Poulsen, F. M., and Skriver, K. (2003). Interactions between plant RING-H2 and plant-specific NAC (NAM/ATAF1/2/CUC2) proteins : RING-H2 molecular specificity and cellular localization. Biochem. J 371, 97-108. Hardtke, C.S., Okamoto, H., Stoop-Myer, C., and Deng, X.W. (2002). Biochemical evidence for ubiquitin ligase activity of the Arabidopsis COP1 interacting protein 8 (CIP8). Plant J 30, 385-394. Hellmann, H., Hobbie, L., Chapman, A., Dharmasiri, S., Dharmasiri, N., del Pozo, C., Reinhardt, D., and Estelle, M. (2003). Arabidopsis AXR6 encodes CUL1 implicating SCF E3 ligases in auxin regulation of embryogenesis. EMBO J. 22, 3314–3325. Hoppe, T. (2005). Multiubiquitylation by E4 enzymes: ''one size'' doesn''t fit all. Trends in biochemical sciences 30, 183-187. Jackson, P. K., Eldridge, A. G., Freed, E., Furstenthal, L., Hsu, J. Y., Kaiser, B. K., and Reimann, J. D. R. (2000). The lore of the RINGs : substrate recognition and catalysis by ubiquitin ligases. Trends Cell Biol. 10, 429-439. Kayes, J.M., and Clark, S.E. (1998). CLAVATA2, a regulator of meristem and organ development in Arabidopsis. Development 125, 3843-3851. Lam, Y.A., Lawson, T.G., Velayutham, M., Zweier, J.L., and Pickart, C.M. (2002). A proteasomal ATPase subunit recognizes the polyubiquitin degradation signal. Nature 416, 763-767. Lenhard, M., Jurgens, G., and Laux, T. (2002). The WUSCHEL and SHOOTMERISTEMLESS genes fulfil complementary roles in Arabidopsis shoot meristem regulation. Development 129, 3195-3206. Long, J.A., and Barton, M.K. (1998). The development of apical embryonic pattern in Arabidopsis. Development 125, 3027-3035. Long, J.A., Moan, E.I., Medford, J.I., and Barton, M.K. (1996). A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379, 66-69. Lovering, R., Hanson, I.M., Borden, K.L., Martin, S., O''Reilly, N.J., Evan, G.I., Rahman, D., Pappin, D.J., Trowsdale, J., and Freemont, P.S. (1993). Identification and preliminary characterization of a protein motif related to the zinc finger. PNAS. 90, 2112-2116. McConnell, J. R. and Barton, M. K. (1995). Effect of mutations in the PINHEAD gene of Arabidopsis on the formation of shoot apical meristems. Dev. Genet. 16, 358-366. Medford, J.I. (1992). Vegetative Apical Meristems. Plant Cell 4, 1029-1039. Nandi, D., Tahiliani, P., Kumar, A., and Chandu, D. (2006). The ubiquitin-proteasome system. Journal of biosciences 31, 137-155. occurrence of a highly conserved RING-H2 zinc finger motif in the model plant Arabidopsis thaliana. FEBS Lett. 436, 283-287. Oyama, T., Shimura, Y., and Okada, K. (1997). The Arabidopsis HY5 gene encodes a bZIP protein that regulates stimulus-induced development of root and hypocotyl. Genes Dev 11, 2983-2995. Peters, J.M. (2002). The anaphase-promoting complex: proteolysis in mitosis and beyond. Molecular cell 9, 931-943. Pickart, C.M. (2000). Ubiquitin in chains. Trends in biochemical sciences 25, 544-548. Sabatini, S., Heidstra, R., Wildwater, M., and Scheres, B. (2003). SCARECROW is involved in positioning the stem cell niche in the Arabidopsis root meristem. Genes Dev 17, 354-358. Scheres, B., Wolkenfelt, H., Willemsen, V., Terlouw, M., Lawson, E., Dean, C. and Weisbeek, P. (1994). Embryonic origin of the Arabidopsis primary root and root meristem initials. Development 120, 2475-2487. Sonoda, Y., Yao, S.G., Sako, K., Sato, T., Kato, W., Ohto, M.A., Ichikawa, T., Matsui, M., Yamaguchi, J., and Ikeda, A. (2007). SHA1, a novel RING finger protein, functions in shoot apical meristem maintenance in Arabidopsis. Plant J 50, 586-596. Vierstra, R.D. (2003). The ubiquitin/26S proteasome pathway, the complex last chapter in the life of many plant proteins. Trends in plant science 8, 135-142. Voges, D., Zwickl, P., and Baumeister, W. (1999). The 26S proteasome: a molecular machine designed for controlled proteolysis. Annual review of biochemistry 68, 1015-1068. Weissman, A.M. (2001). Themes and variations on ubiquitylation. Nature reviews 2, 169-178. Yan, N., Doelling, J.H., Falbel, T.G., Durski, A.M., and Vierstra, R.D. (2000). The ubiquitin-specific protease family from Arabidopsis. AtUBP1 and 2 are required for the resistance to the amino acid analog canavanine. Plant physiology 124, 1828-1843. Zheng, N., Schulman, B.A., Song, L., Miller, J.J., Jeffrey, P.D., Wang, P., Chu, C., Koepp, D.M., Elledge, S.J., Pagano, M., Conaway, R.C., Conaway, J.W., Harper, J.W., and Pavletich, N.P. (2002). Structure of the Cul1-Rbx1-Skp1-F boxSkp2 SCF ubiquitin ligase complex. Nature 416, 703-709. Zheng, N., Wang, P., Jeffrey, P. D., and Pavletich, N. P. (2000). Structure of a c-Cbl-UbcH7 complex : RING domain function in ubiquitin-protein ligases. Cell 102, 533-539. 參考文獻 Blazquez, M.A., and Weigel, D. (2000). Integration of floral inductive signals in Arabidopsis. Nature 404, 889-892. Blazquez, M.A., Green, R., Nilsson, O., Sussman, M.R., and Weigel, D. (1998). Gibberellins promote flowering of Arabidopsis by activating the LEAFY promoter. Plant Cell 10, 791-800. Hayama, R., and Coupland, G. (2003). Shedding light on the circadian clock and the photoperiodic control of flowering. Plant Biol 6,13-19. He, Y., Michaels, S.D., and Amasino, R.M. (2003). Regulation of flowering time by histone acetylation in Arabidopsis. Science 302, 1751–1754. Imaizumi, T., Tran, H.G., Swartz, T.E., Briggs, W.R.,and Kay, S.A. (2003). FKF1 is essential for photoperiodic-specific light signalling in Arabidopsis. Nature 426, 302–306. Johanson, U., West, J., Lister, C., Michaels, S., Amasino, R., and Dean, C. (2000). Molecular Analysis of FRIGIDA, a Major Determinant of Natural Variation in Arabidopsis Flowering Time. Science 290, 344-347. Kardailsky, I., Shukla, V.K., Ahn, J.H., Dagenais, N., Christensen, S.K., Nguyen, J.T., Chory, J., Harrison, M.J., and Weigel, D. (1999). Activation tagging of the floral inducer FT. Science 286, 1962-1965. Kobayashi, Y., Kaya, H., Goto, K., Iwabuchi, M., and Araki, T. (1999). A pair of related genes with antagonistic roles in mediating flowering signals. Science 286, 1960-1962. Ledger, S., Strayer, C., Ashton, F., Kay, S.A., and Putterill, J. (2001). Analysis of the function of two circadian-regulated CONSTANS-LIKE genes. Plant J 26, 15-22. Liu J., Yu J., McIntosh L., Kende H., and Zeevaart J.A. (2001). Isolation of a CONSTANS ortholog from Pharbitis nil and its role in flowering. Plant Physiol 125, 1821–1830. Michaels, S.D., and Amasino, R.M. (2001). Loss of FLOWERING LOCUS C activity eliminates the late-flowering phenotype of FRIGIDA and autonomous pathway mutations but not responsiveness to vernalization. Plant Cell 13, 935–941. Michaels, S.D., Yuehui, H., Scortecci, K.C., and Amasino, R.M. (2003). Attenuation of FLOWERING LOCUS C activity as a mechanism for the evolution of summer-annual flowering behavior in Arabidopsis. PNAS 100, 10102–10107. Moon, J., Suh, S.S., Lee, H., Choi, K.R., Hong, C.B., Paek, N.C., Kim, S.G., and Lee, I. (2003). The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant J 35, 613-623. Nilsson, O., Lee, I., Blazquez, M.A., and Weigel, D. (1998). Flowering-time genes modulate the response to LEAFY activity. Genetics 150, 403-410. Putterill, J., and Coupland, G. (2001). Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J 28, 619–631. Putterill, J., Robson, F., Lee, K., Simon, R., and Coupland, G. (1995). The CONSTANS gene of Arabidopsis promotes flowering and encodes a protein showing similarities to zinc finger transcription factors. Cell 80, 847-857. Robson, F., Costa, M.M.R., Hepworth, S.R., Vizir, I., Pineiro, M., Reeves, P.H., Putterill, J., and Coupland, G. (2001). Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J 28, 619-631. Sheldon, C.C., Conn, A.B., Dennis, E.S., Peacock, and W.J. (2002). Different regulatory regions are required for the vernalization-induced repression of FLOWERING LOCUS C and for the epigenetic maintenance of repression. Plant Cell 14, 2527–2537. Simpson, G.G., Dijkwel, P.P., Quesada, V., and Henderson, I.C.D. (2003). FY Is an RNA 3’ end processing factor that interacts with FCA to control the Arabidopsis floral transition. Cell 113, 777–787. Song, J., Yamamoto, K., Shomura, A., Itadani, H., Zhong, H.S., Yano, M., and Sasaki, T. (1998). Isolation and mapping of a family of putative zinc-finger protein cDNAs from rice. DNA Res 30, 95–101. Strayer, C., Oyama, T., Schultz, T.F., Raman, R., Somers, D.E., Mas P., Panda S., Kreps, J.A., and Kay, S.A. (2000). Cloning of the Arabidopsis clock gene TOC1, an autoregulatory response regulator homolog. Science 289, 768–771. Sua´rez-Lo´pez, P., Wheatley, K., Robson, F., Onouchi, H., Valverde, F., and Coupland, G. (2001). CONSTANS mediates between the circadian clock and the control of flowering in Arabidopsis. Nature 410, 1116–1119. Suh, S.S., Choi, K.R., and Lee, I. (2003). Revisiting phase transition during flowering in Arabidopsis. Plant Cell Physiol 44, 836-843. Torok, M., and Elkin, L.D. (2000). Two B or not two B? Overview of the rapidly expanding B-box family of proteins. Differentiation 67, 63-71. Valverde, F., Mouradov, A., Soppe, W., Ravenscroft, D., Samach, A., and Coupland, G. (2004). Photoreceptor regulation of CONSTANS protein in photoperiodic flowering. Science 303, 1003–1006. Yano, M., Katayose, Y., Ashikara, M., Yamanouchi, U., Monna, L., Fuse, T., Baba, T., Yamamoto, K., Umehara, Y., and Nagamura, Y. (2000). Hd1, a major photoperiod sensitivity quantitative trait locus in rice, is closely related to the Arabidopsis flowering time gene CONSTANS. Plant Cell 12, 2473–2483.
摘要: 
摘要

植物由胚胎發育、營養生長及生殖生長,是受到各種不同的發育途徑與基因所影響。具RING finger domain的E3s接合酶(E3s ligase),影響植物多方面的生理反應。本研究由阿拉伯芥中選殖出AtRING5基因進行功能性分析。藉由啟動子活性分析,進一步構築AtRING5基因的啟動子藉由驅動GUS報導基因的表現來呈現它們的表現位置。結果發現GUS明顯表現在分生組織附近的區域,且在新生組織中表現明顯,並隨著組織發育成熟而逐漸減少。經由生長素IAA誘導發根,發現GUS主要表現在新生側根分生組織,確定AtRING5與分生組織的發育有關。而在異位大量表現基因(sense)及抑制基因表現(antisense及RNAi)後,發現主花序發育受到影響、胚胎期子葉發育異常、根形態改變及根毛發育異常之現象,推測AtRING5具有調節早期生長發育的功能。植物由營養生長到生殖生長的過程中,受到許多途徑的調節,而光週期途徑中的CONSTANS (CO)基因扮演關鍵的角色。CO會誘導下游FT表現而促使開花。本研究由文心蘭及洋桔梗中選殖CO-like同源基因,文心蘭中選殖到的OnCOL1轉譯出328個胺基酸,並會受到黑暗而促進表現。異位大量表現OnCOL1於阿拉伯芥中,會有提早開花的現象。另外在洋桔梗中選殖到EgCOL1、EgCOL2及EgCOL3三個CO-like同源基因,EgCOL1由369個胺基酸構成,EgCOL3由320個胺基酸構成,而EgCOL2只有571 bp的片段。EgCOL1及EgCOL3在萼片、花梗及葉片皆有明顯表現。而此三個EgCO-like的功能性,需經由進一步基因轉殖至阿拉伯芥及洋桔梗中才能確認。

ABSTRACT

Plant development is regulated by many genes and pathways from embryotic phase, vegetative phase to reproductive phase. RING genes that contained a RING finger motif as E3 function have been thought to be involved in ubiquitination pathway in regulating plant development. AtRING5 with conserved RING domain encoded a 493 amino acid protein was identified in Arabidopsis. To further investigate AtRING5 function, promoter assay and transgenic approaches were used. Promoter assay by transforming constructs fusing the promoter of AtRING5 with report GUS gene in Arabidopsis indicated that AtRING5 was expressed in young shoot and root meristem and its expression was decreased during late stage of organ development. Furthermore, GUS was detected in the meristem of the newly formed lateral roots in Arabidopsis after IAA induction. These results indicated that AtRING5 may be a regulator in controlling the meristem formation. Transgenic plant that ectopic expressed sense, antisense and RNAi (RNA interference) of AtRING5 resulted in the alteration of inflorescence differentiation, cotyledon formation, root morphology and root hair development. This data supported that AtRING5 is functioning in regulation of meristem formation during early development stage. Many pathways regulated the flowering transition including circadian clock associated genes such as GI and CO (CONSTANTS) which play a mediated role in photoperiodic pathway of Arabidopsis. CO has been thought to activate its target gene FT (Flowering locus T) to promote the flowering in LDs. In this study, CO-like genes were cloned and characterized from Oncidium Gower Ramsey and Eustoma grandiflorum. The expression of Oncidium OnCOL1 that encoded a 328 amino acids protein was induced by dark treatment. In 35S::OnCOL1 transgenic Arabidopsis plants, acceleration in flowering time was observed. In addition, three CO-like genes, EgCOL1 and 3 encode proteins of 369 and 320 amino acid residues and EgCOL2 with 517 bp partial DNA sequence were cloned from E. grandiflorum. Constructs contained EgCOL genes were constructed for further functional analysis through transgenic approach in both Arabidopsis and E. grandiflorum.
URI: http://hdl.handle.net/11455/36157
其他識別: U0005-2708200715164300
Appears in Collections:生物科技學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.