Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/36174
標題: 植物中調控開花時間、花器形成與老化相關基因之選殖與分析
Molecular Cloning and Functional Analysis of Genes Controlling Flower Initiation, Formation, and Senescence in Plants
作者: 陳銘坤
Chen, Ming-Kun
關鍵字: Arabidopsis;阿拉伯芥;flower;花
出版社: 生物科技學研究所
引用: 林怡君. 2002. 百合中三個調控開花起始之AP1 group MADS box 基因的分子選殖與功能分析國立中興大學農業生物科技學研究所. 碩士論文. 謝文蘋. 2006. 百合MADS box基因之功能性分析及其相互作用以調控花器形成機制之探討. 碩士論文. Adam, H., Jouannic, S., Morcillo, F., Richaud, F., Duval, Y., and Tregear, J.W. 2006. MADS box genes in oil palm (Elaeis guineensis): patterns in the evolution of the SQUAMOSA, DEFICIENS, GLOBOSA, AGAMOUS, and SEPALLATA subfamilies. J Mol Evol 62: 15-31. Angenent, G.C., Busscher, M., Franken, J., Mol, J.N., and van Tunen, A.J. 1992. Differential expression of two MADS box genes in wild-type and mutant petunia flowers. Plant Cell 4: 983-993. Angenent, G.C., Franken, J., Busscher, M., Weiss, D., and van Tunen, A.J. 1994. Co-suppression of the petunia homeotic gene fbp2 affects the identity of the generative meristem. Plant J 5: 33-44. Berbel, A., Navarro, C., Ferrandiz, C., Canas, L.A., Madueno, F., and Beltran, J.P. 2001. Analysis of PEAM4, the pea AP1 functional homologue, supports a model for AP1-like genes controlling both floral meristem and floral organ identity in different plant species. Plant J 25: 441-451. Bowman, J.L., Alvarez, J., Weigel, D., Meyerowitz, E.M., and Smyth, D.R. 1993. Control of flower development in Arabidopsis thaliana by APETALA1 and interacting genes. Development 119: 721-743. Ditta, G., Pinyopich, A., Robles, P., Pelaz, S., and Yanofsky, M.F. 2004. The SEP4 gene of Arabidopsis thaliana functions in floral organ and meristem identity. Curr Biol 14: 1935-1940. Ferrandiz, C., Gu, Q., Martienssen, R., and Yanofsky, M.F. 2000. Redundant regulation of meristem identity and plant architecture by FRUITFULL, APETALA1 and CAULIFLOWER. Development 127: 725-734. Ferrario, S., Immink, R.G., Shchennikova, A., Busscher-Lange, J., and Angenent, G.C. 2003. The MADS box gene FBP2 is required for SEPALLATA function in petunia. Plant Cell 15: 914-925. Fischer, A., Baum, N., Saedler, H., and Theissen, G. 1995. Chromosomal mapping of the MADS-box multigene family in Zea mays reveals dispersed distribution of allelic genes as well as transposed copies. Nucleic Acids Res 23: 1901-1911. Fornara, F., Parenicova, L., Falasca, G., Pelucchi, N., Masiero, S., Ciannamea, S., Lopez-Dee, Z., Altamura, M.M., Colombo, L., and Kater, M.M. 2004. Functional characterization of OsMADS18, a member of the AP1/SQUA subfamily of MADS box genes. Plant Physiol 135: 2207-2219. Gocal, G.F., King, R.W., Blundell, C.A., Schwartz, O.M., Andersen, C.H., and Weigel, D. 2001. Evolution of floral meristem identity genes. Analysis of Lolium temulentum genes related to APETALA1 and LEAFY of Arabidopsis. Plant Physiol 125: 1788-1801. Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. 1994. Regulation of the arabidopsis floral homeotic gene APETALA1. Cell 76: 131-143. Hayes, T.E., Sengupta, P., and Cochran, B.H. 1988. The human c-fos serum response factor and the yeast factors GRM/PRTF have related DNA-binding specificities. Genes Dev 2: 1713-1722. Honma, T. and Goto, K. 2001. Complexes of MADS-box proteins are sufficient to convert leaves into floral organs. Nature 409: 525-529. Hsu, H.F., Huang, C.H., Chou, L.T., and Yang, C.H. 2003. Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol 44: 783-794. Huang, H., Mizukami, Y., Hu, Y., and Ma, H. 1993. Isolation and characterization of the binding sequences for the product of the Arabidopsis floral homeotic gene AGAMOUS. Nucleic Acids Res 21: 4769-4776. Huijser, P., Klein, J., Lonnig, W.E., Meijer, H., Saedler, H., and Sommer, H. 1992. Bracteomania, an inflorescence anomaly, is caused by the loss of function of the MADS-box gene squamosa in Antirrhinum majus. Embo J 11: 1239-1249. Immink, R.G., Gadella, T.W., Jr., Ferrario, S., Busscher, M., and Angenent, G.C. 2002. Analysis of MADS box protein-protein interactions in living plant cells. Proc Natl Acad Sci U S A 99: 2416-2421. Jack, T. 2001. Plant development going MADS. Plant Mol Biol 46: 515-520. Jang, S., An, K., Lee, S., and An, G. 2002. Characterization of tobacco MADS-box genes involved in floral initiation. Plant Cell Physiol 43: 230-238. Jeon, J.S., Lee, S., Jung, K.H., Yang, W.S., Yi, G.H., Oh, B.G., and An, G. 2000. Production of transgenic rice plants showing reduced heading date and plant height by ectopic expression of rice MADS-box genes. Mol Breeding 6: 581-592. Jia, H., Chen, R., Cong, B., Cao, K., Sun, C., and Luo, D. 2000. Characterization and transcriptional profiles of two rice MADS-box genes. Plant Sci 155: 115-122. Kater, M.M., Dreni, L., and Colombo, L. 2006. Functional conservation of MADS-box factors controlling floral organ identity in rice and Arabidopsis. J Exp Bot 57: 3433-3444. Kaufmann, K., Melzer, R., and Theissen, G. 2005. MIKC-type MADS-domain proteins: structural modularity, protein interactions and network evolution in land plants. Gene 347: 183-198. Kempin, S.A., Savidge, B., and Yanofsky, M.F. 1995. Molecular basis of the cauliflower phenotype in Arabidopsis. Science 267: 522-525. Kyozuka, J., Harcourt, R., Peacock, W.J., and Dennis, E.S. 1997. Eucalyptus has functional equivalents of the Arabidopsis AP1 gene. Plant Mol Biol 35: 573-584. Kyozuka, J., Kobayashi, T., Morita, M., and Shimamoto, K. 2000. Spatially and temporally regulated expression of rice MADS box genes with similarity to Arabidopsis class A, B and C genes. Plant Cell Physiol 41: 710-718. Lawton-Rauh, A.L., Alvarez-Buylla, E.R., and Purugganan, M.D. 2000. Molecular evolution of flower development. Trends Ecol Evol 15: 144-149. Liljegren, S.J., Gustafson-Brown, C., Pinyopich, A., Ditta, G.S., and Yanofsky, M.F. 1999. Interactions among APETALA1, LEAFY, and TERMINAL FLOWER1 specify meristem fate. Plant Cell 11: 1007-1018. Litt, A. and Irish, V.F. 2003. Duplication and diversification in the APETALA1/FRUITFULL floral homeotic gene lineage: implications for the evolution of floral development. Genetics 165: 821-833. Malcomber, S.T. and Kellogg, E.A. 2005. SEPALLATA gene diversification: brave new whorls. Trends Plant Sci 10: 427-435. Mandel, M.A., Gustafson-Brown, C., Savidge, B., and Yanofsky, M.F. 1992. Molecular characterization of the Arabidopsis floral homeotic gene APETALA1. Nature 360: 273-277. Mandel, M.A. and Yanofsky, M.F. 1995a. The Arabidopsis AGL8 MADS box gene is expressed in inflorescence meristems and is negatively regulated by APETALA1. Plant Cell 7: 1763-1771. Mandel, M.A. and Yanofsky, M.F. 1995b. A gene triggering flower formation in Arabidopsis. Nature 377: 522-524. Mena, M., Mandel, M.A., Lerner, D.R., Yanofsky, M.F., and Schmidt, R.J. 1995. A characterization of the MADS-box gene family in maize. Plant J 8: 845-854. Moon, Y.H., Kang, H.G., Jung, J.Y., Jeon, J.S., Sung, S.K., and An, G. 1999. Determination of the motif responsible for interaction between the rice APETALA1/AGAMOUS-LIKE9 family proteins using a yeast two-hybrid system. Plant Physiol 120: 1193-1204. Mouradov, A., Glassick, T.V., Hamdorf, B.A., Murphy, L.C., Marla, S.S., Yang, Y., and Teasdale, R.D. 1998. Family of MADS-Box genes expressed early in male and female reproductive structures of monterey pine. Plant Physiol 117: 55-62. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol Plant 15: 473-479. Pelaz, S., Ditta, G.S., Baumann, E., Wisman, E., and Yanofsky, M.F. 2000. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature 405: 200-203. Pelaz, S., Gustafson-Brown, C., Kohalmi, S.E., Crosby, W.L., and Yanofsky, M.F. 2001. APETALA1 and SEPALLATA3 interact to promote flower development. Plant J 26: 385-394. Pnueli, L., Hareven, D., Broday, L., Hurwitz, C., and Lifschitz, E. 1994. The TM5 MADS Box Gene Mediates Organ Differentiation in the Three Inner Whorls of Tomato Flowers. Plant Cell 6: 175-186. Purugganan, M.D., Rounsley, S.D., Schmidt, R.J., and Yanofsky, M.F. 1995. Molecular evolution of flower development: diversification of the plant MADS-box regulatory gene family. Genetics 140: 345-356. Riechmann, J.L., Wang, M., and Meyerowitz, E.M. 1996. DNA-binding properties of Arabidopsis MADS domain homeotic proteins APETALA1, APETALA3, PISTILLATA and AGAMOUS. Nucleic Acids Res 24: 3134-3141. Schmidt, R.J. and Ambrose, B.A. 1998. The blooming of grass flower development. Curr Opin Plant Biol 1: 60-67. Sung, S.K., Yu, G.H., and An, G. 1999. Characterization of MdMADS2, a member of the SQUAMOSA subfamily of genes, in apple. Plant Physiol 120: 969-978. Theissen, G. 2001. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4: 75-85. Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K.U., and Saedler, H. 2000. A short history of MADS-box genes in plants. Plant Mol Biol 42: 115-149. Theissen, G. and Saedler, H. 2001. Plant biology. Floral quartets. Nature 409: 469-471. Tzeng, T.Y., Chen, H.Y., and Yang, C.H. 2002. Ectopic expression of carpel-specific MADS box genes from lily and lisianthus causes similar homeotic conversion of sepal and petal in Arabidopsis. Plant Physiol 130: 1827-1836. Tzeng, T.Y., Hsiao, C.C., Chi, P.J., and Yang, C.H. 2003. Two lily SEPALLATA-like genes cause different effects on floral formation and floral transition in Arabidopsis. Plant Physiol 133: 1091-1101. Tzeng, T.Y., Liu, H.C., and Yang, C.H. 2004. The C-terminal sequence of LMADS1 is essential for the formation of homodimers for B function proteins. J Biol Chem 279: 10747-10755. Tzeng, T.Y. and Yang, C.H. 2001. A MADS box gene from lily (Lilium Longiflorum) is sufficient to generate dominant negative mutation by interacting with PISTILLATA (PI) in Arabidopsis thaliana. Plant Cell Physiol 42: 1156-1168. Vandenbussche, M., Theissen, G., Van de Peer, Y., and Gerats, T. 2003. Structural diversification and neo-functionalization during floral MADS-box gene evolution by C-terminal frameshift mutations. Nucleic Acids Res 31: 4401-4409. Winter, K.U., Weiser, C., Kaufmann, K., Bohne, A., Kirchner, C., Kanno, A., Saedler, H., and Theissen, G. 2002. Evolution of class B floral homeotic proteins: obligate heterodimerization originated from homodimerization. Mol Biol Evol 19: 587-596. Yu, H. and Goh, C.J. 2000. Identification and characterization of three orchid MADS-box genes of the AP1/AGL9 subfamily during floral transition. Plant Physiol 123: 1325-1336. Adamczyk, B.J., Lehti-Shiu, M.D., and Fernandez, D.E. 2007. The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J 50: 1007-1019. Alvarez-Buylla, E.R., Liljegren, S.J., Pelaz, S., Gold, S.E., Burgeff, C., Ditta, G.S., Vergara-Silva, F., and Yanofsky, M.F. 2000. MADS-box gene evolution beyond flowers: expression in pollen, endosperm, guard cells, roots and trichomes. Plant J 24: 457-466. Bleecker, A.B. and Patterson, S.E. 1997. Last exit: senescence, abscission, and meristem arrest in Arabidopsis. Plant Cell 9: 1169-1179. Butenko, M.A., Patterson, S.E., Grini, P.E., Stenvik, G.E., Amundsen, S.S., Mandal, A., and Aalen, R.B. 2003. Inflorescence deficient in abscission controls floral organ abscission in Arabidopsis and identifies a novel family of putative ligands in plants. Plant Cell 15: 2296-2307. Cai, S. and Lashbrook, C.C. 2008. Stamen abscission zone transcriptome profiling reveals new candidates for abscission control: enhanced retention of floral organs in transgenic plants overexpressing Arabidopsis ZINC FINGER PROTEIN2. Plant Physiol 146: 1305-1321. Chen, L., Cheng, J.C., Castle, L., and Sung, Z.R. 1997. EMF genes regulate Arabidopsis inflorescence development. Plant Cell 9: 2011-2024. Chen, Y.F., Etheridge, N., and Schaller, G.E. 2005. Ethylene signal transduction. Ann Bot (Lond) 95: 901-915. Ellis, C.M., Nagpal, P., Young, J.C., Hagen, G., Guilfoyle, T.J., and Reed, J.W. 2005. AUXIN RESPONSE FACTOR1 and AUXIN RESPONSE FACTOR2 regulate senescence and floral organ abscission in Arabidopsis thaliana. Development 132: 4563-4574. Fernandez, D.E., Heck, G.R., Perry, S.E., Patterson, S.E., Bleecker, A.B., and Fang, S.C. 2000. The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. Plant Cell 12: 183-198. Gonzalez-Carranza, Z.H., Elliott, K.A., and Roberts, J.A. 2007a. Expression of polygalacturonases and evidence to support their role during cell separation processes in Arabidopsis thaliana. J Exp Bot 58: 3719-3730. Gonzalez-Carranza, Z.H., Rompa, U., Peters, J.L., Bhatt, A.M., Wagstaff, C., Stead, A.D., and Roberts, J.A. 2007b. Hawaiian skirt: an F-box gene that regulates organ fusion and growth in Arabidopsis. Plant Physiol 144: 1370-1382. Hepworth, S.R., Zhang, Y., McKim, S., Li, X., and Haughn, G.W. 2005. BLADE-ON-PETIOLE-dependent signaling controls leaf and floral patterning in Arabidopsis. Plant Cell 17: 1434-1448. Holden, M.J., Marty, J.A., and Singh-Cundy, A. 2003. Pollination-induced ethylene promotes the early phase of pollen tube growth in Petunia inflata. J Plant Physiol 160: 261-269. Immink, R.G., Gadella, T.W., Jr., Ferrario, S., Busscher, M., and Angenent, G.C. 2002. Analysis of MADS box protein-protein interactions in living plant cells. Proc Natl Acad Sci U S A 99: 2416-2421. Jack, T. 2001. Plant development going MADS. Plant Mol Biol 46: 515-520. Jefferson, R.A., Kavanagh, T.A., and Bevan, M.W. 1987. GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. Embo J 6: 3901-3907. Jinn, T.L., Stone, J.M., and Walker, J.C. 2000. HAESA, an Arabidopsis leucine-rich repeat receptor kinase, controls floral organ abscission. Genes Dev 14: 108-117. Jones, M.L. and Woodson, W.R. 1997. Pollination-Induced Ethylene in Carnation (Role of Stylar Ethylene in Corolla Senescence). Plant Physiol 115: 205-212. Kandasamy, M.K., Deal, R.B., McKinney, E.C., and Meagher, R.B. 2005a. Silencing the nuclear actin-related protein AtARP4 in Arabidopsis has multiple effects on plant development, including early flowering and delayed floral senescence. Plant J 41: 845-858. Kandasamy, M.K., McKinney, E.C., Deal, R.B., and Meagher, R.B. 2005b. Arabidopsis ARP7 is an essential actin-related protein required for normal embryogenesis, plant architecture, and floral organ abscission. Plant Physiol 138: 2019-2032. Lehti-Shiu, M.D., Adamczyk, B.J., and Fernandez, D.E. 2005. Expression of MADS-box genes during the embryonic phase in Arabidopsis. Plant Mol Biol 58: 89-107. Mao, L., Begum, D., Chuang, H.W., Budiman, M.A., Szymkowiak, E.J., Irish, E.E., and Wing, R.A. 2000. JOINTLESS is a MADS-box gene controlling tomato flower abscission zone development. Nature 406: 910-913. McKim, S.M., Stenvik, G.E., Butenko, M.A., Kristiansen, W., Cho, S.K., Hepworth, S.R., Aalen, R.B., and Haughn, G.W. 2008. The BLADE-ON-PETIOLE genes are essential for abscission zone formation in Arabidopsis. Development 135: 1537-1546. Michaels, S.D. and Amasino, R.M. 1999. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell 11: 949-956. Nawy, T., Lee, J.Y., Colinas, J., Wang, J.Y., Thongrod, S.C., Malamy, J.E., Birnbaum, K., and Benfey, P.N. 2005. Transcriptional profile of the Arabidopsis root quiescent center. Plant Cell 17: 1908-1925. Norberg, M., Holmlund, M., and Nilsson, O. 2005. The BLADE ON PETIOLE genes act redundantly to control the growth and development of lateral organs. Development 132: 2203-2213. Okushima, Y., Mitina, I., Quach, H.L., and Theologis, A. 2005. AUXIN RESPONSE FACTOR 2 (ARF2): a pleiotropic developmental regulator. Plant J 43: 29-46. Onouchi, H., Igeno, M.I., Perilleux, C., Graves, K., and Coupland, G. 2000. Mutagenesis of plants overexpressing CONSTANS demonstrates novel interactions among Arabidopsis flowering-time genes. Plant Cell 12: 885-900. Parenicova, L., de Folter, S., Kieffer, M., Horner, D.S., Favalli, C., Busscher, J., Cook, H.E., Ingram, R.M., Kater, M.M., Davies, B., Angenent, G.C., and Colombo, L. 2003. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell 15: 1538-1551. Patterson, S.E. and Bleecker, A.B. 2004. Ethylene-dependent and -independent processes associated with floral organ abscission in Arabidopsis. Plant Physiol 134: 194-203. Roberts, J.A., Elliott, K.A., and Gonzalez-Carranza, Z.H. 2002. Abscission, dehiscence, and other cell separation processes. Annu Rev Plant Biol 53: 131-158. Samach, A., Onouchi, H., Gold, S.E., Ditta, G.S., Schwarz-Sommer, Z., Yanofsky, M.F., and Coupland, G. 2000. Distinct roles of CONSTANS target genes in reproductive development of Arabidopsis. Science 288: 1613-1616. Sheldon, C.C., Burn, J.E., Perez, P.P., Metzger, J., Edwards, J.A., Peacock, W.J., and Dennis, E.S. 1999. The FLF MADS box gene: a repressor of flowering in Arabidopsis regulated by vernalization and methylation. Plant Cell 11: 445-458. Sheldon, C.C., Rouse, D.T., Finnegan, E.J., Peacock, W.J., and Dennis, E.S. 2000. The molecular basis of vernalization: the central role of FLOWERING LOCUS C (FLC). Proc Natl Acad Sci U S A 97: 3753-3758. Solano, R., Stepanova, A., Chao, Q., and Ecker, J.R. 1998. Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12: 3703-3714. Stepanova, A.N. and Alonso, J.M. 2005. Arabidopsis ethylene signaling pathway. Sci STKE 2005: cm4. Theissen, G. 2001. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol 4: 75-85. Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K.U., and Saedler, H. 2000. A short history of MADS-box genes in plants. Plant Mol Biol 42: 115-149. Theissen, G. and Saedler, H. 2001. Plant biology. Floral quartets. Nature 409: 469-471. Yokoyama, R. and Nishitani, K. 2004. Genomic basis for cell-wall diversity in plants. A comparative approach to gene families in rice and Arabidopsis. Plant Cell Physiol 45: 1111-1121. 徐杏芬. 2003. 文心蘭花朵發育相關之MADS box基因之選殖及功能分析. 博士論文 Adamczyk, B.J., Lehti-Shiu, M.D., and Fernandez, D.E. 2007. The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. Plant J 50: 1007-1019. Buttner, M. and Sauer, N. 2000. Monosaccharide transporters in plants: structure, function and physiology. Biochim Biophys Acta 1465: 263-274. Dalman, F.C., Scherrer, L.C., Taylor, L.P., Akil, H., and Pratt, W.B. 1991. Localization of the 90-kDa heat shock protein-binding site within the hormone-binding domain of the glucocorticoid receptor by peptide competition. J Biol Chem 266: 3482-3490. Fernandez, D.E., Heck, G.R., Perry, S.E., Patterson, S.E., Bleecker, A.B., and Fang, S.C. 2000. The embryo MADS domain factor AGL15 acts postembryonically. Inhibition of perianth senescence and abscission via constitutive expression. Plant Cell 12: 183-198. Hsu, H.F., Huang, C.H., Chou, L.T., and Yang, C.H. 2003. Ectopic expression of an orchid (Oncidium Gower Ramsey) AGL6-like gene promotes flowering by activating flowering time genes in Arabidopsis thaliana. Plant Cell Physiol 44: 783-794. Immink, R.G., Gadella, T.W., Jr., Ferrario, S., Busscher, M., and Angenent, G.C. 2002. Analysis of MADS box protein-protein interactions in living plant cells. Proc Natl Acad Sci U S A 99: 2416-2421. Ito, T., Wellmer, F., Yu, H., Das, P., Ito, N., Alves-Ferreira, M., Riechmann, J.L., and Meyerowitz, E.M. 2004. The homeotic protein AGAMOUS controls microsporogenesis by regulation of SPOROCYTELESS. Nature 430: 356-360. Lawton-Rauh, A.L., Alvarez-Buylla, E.R., and Purugganan, M.D. 2000. Molecular evolution of flower development. Trends Ecol Evol 15: 144-149. Lehti-Shiu, M.D., Adamczyk, B.J., and Fernandez, D.E. 2005. Expression of MADS-box genes during the embryonic phase in Arabidopsis. Plant Mol Biol 58: 89-107. Panavas, T., Pikula, A., Reid, P.D., Rubinstein, B., and Walker, E.L. 1999. Identification of senescence-associated genes from daylily petals. Plant Mol Biol 40: 237-248. Price, J., Laxmi, A., St Martin, S.K., and Jang, J.C. 2004. Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16: 2128-2150. Sablowski, R.W. and Meyerowitz, E.M. 1998. A homolog of NO APICAL MERISTEM is an immediate target of the floral homeotic genes APETALA3/PISTILLATA. Cell 92: 93-103. Theissen, G., Becker, A., Di Rosa, A., Kanno, A., Kim, J.T., Munster, T., Winter, K.U., and Saedler, H. 2000. A short history of MADS-box genes in plants. Plant Mol Biol 42: 115-149. Theissen, G. and Saedler, H. 2001. Plant biology. Floral quartets. Nature 409: 469-471. Truernit, E., Schmid, J., Epple, P., Illig, J., and Sauer, N. 1996. The sink-specific and stress-regulated Arabidopsis STP4 gene: enhanced expression of a gene encoding a monosaccharide transporter by wounding, elicitors, and pathogen challenge. Plant Cell 8: 2169-2182. Truernit, E., Stadler, R., Baier, K., and Sauer, N. 1999. A male gametophyte-specific monosaccharide transporter in Arabidopsis. Plant J 17: 191-201. Wagner, D., Wellmer, F., Dilks, K., William, D., Smith, M.R., Kumar, P.P., Riechmann, J.L., Greenland, A.J., and Meyerowitz, E.M. 2004. Floral induction in tissue culture: a system for the analysis of LEAFY-dependent gene regulation. Plant J 39: 273-282. Williams, L.E., Lemoine, R., and Sauer, N. 2000. Sugar transporters in higher plants-a diversity of roles and complex regulation. Trends Plant Sci 5: 283-290. Yanagisawa, S., Yoo, S.D., and Sheen, J. 2003. Differential regulation of EIN3 stability by glucose and ethylene signalling in plants. Nature 425: 521-525.
摘要: 
本實驗主要是對植物中5個MADS box基因做特性及功能性之探討。首先是由百合 (lily, Lilium longiflorum) 中選殖出的3個MADS box基因-Lily MADS Box Gene 5 (LMADS5)、LMADS6與LMADS7,其序列與MADS box基因中的SQUA-subfamily有極高的相似性。這3個基因的表現情形有部分類似,都會表現在營養期的莖與花序分生組織。不過,LMADS5/6均會高表現在營養葉與雌蕊,LMADS7卻沒有表現在這2個位置。若在阿拉伯芥異位表現這3個基因,都會造成阿拉伯芥提早開花、出現終結花序、花萼轉變為雌蕊狀與花瓣轉變為雄蕊狀。若在阿拉伯芥的ap1突變株異位表現LMADS6/7,則ap1阿拉伯芥突變的性狀就可以恢復成野生型。這些結果顯示LMADS5/6/7的功能與開花起始和花器的形成相關。此外,百合的LMADS6/7可以救回阿拉伯芥的ap1突變性狀,表示在SQUA/AP1 subfamily的MADS box基因並非必須擁有C端的保守性區域 (paleoAP1 or euAP1 motif) 才有完整的功能 (第一章)。
異位表現阿拉伯芥之MADS box基因-Forever Young Flower (FYF) 會造成轉殖阿拉伯芥提早開花和延遲花器的老化與脫離。FYF在花苞授粉前有高表現,授粉後表現量逐漸降低。在FYF::GUS轉基因植物中,1或2個星期小苗的葉基部可以偵測到GUS的活性,在花苞授粉前的花蕚、花瓣、這兩個花器的離層與花梗的基部也可以偵測到GUS的活性,而在授粉後GUS的活性就逐漸降低,在果莢時只有離層有些許的表現。IDA::FYF的花器也會延遲脫離,可能是IDA的表現受到FYF抑制的結果。由此可知,FYF與花器的老化與脫離相關。將35S::FYF轉基因植物以乙烯處理之後,延遲花器老化與脫離的性狀並沒有消失,顯示FYF可能影響乙烯的訊息傳遞。經由real-time PCR或microarray的結果顯示,乙烯訊息傳遞的部份基因,如EDF1/2/4與AtERF1/2/5在35S::FYF轉基因植物中被抑制;花器老化與脫離相關基因中,IDA在35S::FYF轉基因植物中被抑制,AtZFP2則是被誘導,HAESA與HWS則不受影響。本實驗結果顯示,FYF經由抑制乙烯的訊息傳遞與IDA的表現,以及誘導AtZFP2的表現,因此控制花器的老化與脫離 (第二章)。
將文心蘭之OMADS1基因以35S::OMADS1-GR轉殖入阿拉伯芥,以DEX處理不同時間後,以microarray的實驗來分析阿拉伯芥中受OMADS1調控的直接下游基因。結果顯示,DEX處理後高表現基因有97個,低表現的基因有68個。TETRASPANIN 9 (TET9)、AGAMOUS LIKE 18 (AGL18) 與SUGAR TRANSPORTER PROTEIN 13 (STP13) 是其中3個高表現的基因,在這3個基因的promoter都有CArG box,因此這3個基因可能是受OMADS1調控的直接下游基因。TET9是老化相關蛋白質 (senescence-associated protein)。35S::TET9轉基因植物之花藥發育不全且不開裂,因此造成轉基因植物有不孕的性狀。STP13是單醣轉運蛋白質 (monosaccharide transporter protein),35S::STP13轉基因植物的會提早開花,可能是細胞內glucose濃度改變,因此誘導表現開花基因造成早開花。AGL18是MADS box基因,35S:: AGL18轉基因植物沒有明顯異於野生型的性狀 (第三章)。

Five MADS box genes were characterized in this study. Lily MADS Box Gene 5 (LMADS5)、LMADS6 and LMADS7 showed high homology to the SQUA subfamily of MADS box genes were isolated and characterized from the lily (Lilium longiflorum). The expression pattern for these three genes was similar and their RNA was detected in vegetative stem and inflorescence meristem. LMADS5, 6 were highly expressed in vegetative leaves and carpel whereas the LMADS7 expression was absent. Ectopic expression of LMADS5, 6 or 7 in transgenic Arabidopsis plants showed novel phenotypes by flowering early and producing terminal flowers. Homeotic conversion of sepals to carpelloid and petal to stamen-like structures were also observed in 35S::LMADS5, 6 or 7 flowers. Ectopic expression of LMADS6 or LMADS7 was able to complement the ap1 flower defect in transgenic Arabidopsis ap1 mutant plants. These results strongly indicated that the function of these three lily genes was involved in flower formation as well as in floral induction. Furthermore, the ability for lily LMADS 6 and 7 to complement the Arabidopsis ap1 mutant provided further evidence to show that the conserved motifs (paleoAP1 or euAP1) in C terminus of SQUA/AP1 subfamily of MADS box genes is not strictly necessary for their function (Chapter 1).
Ectopic expression of Forever Young Flower (FYF), a MADS box gene of Arabidopsis, caused significantly delayed flower senescence and abscission in transgenic Arabidopsis. The expression of FYF was highly detected in flower buds and was significantly decreased after pollination. In FYF::GUS flowers, the GUS activity was strongly detected in sepals, petals and the abscission zones (AZs) of both flower organs and pedicel of young flower buds and was significantly decreased in mature flowers. Ectopic expression of FYF specifically in the AZ exhibited the delay of abscission for flower organs in IDA::FYF Arabidopsis due to the inhibition of IDA by FYF. This indicated that FYF activity is required for controlling both senescence and abscission of the flower organs. The delayed senescence and abscission of the flower organs in 35S::FYF Arabidopsis was unaffected by the ethylene treatment. Downstream genes of ethylene signaling pathway such as AtERF1/2/5 and EDF1/2/4 were repressed in 35S::FYF transgenic Arabidopsis. Furthermore, the expression of senescence/abscission associated genes was down-regulated (IDA), up-regulated (AtZFP2) or unaffected (HAESA/HWS) in 35S::FYF flowers. Our data suggested a novel role for MADS box gene FYF in controlling the floral senescence and abscission by regulating downstream of ethylene perception, IDA and AtZFP2 expression (Chapter 2).
To investigate the direct target genes regulated by Oncidium MADS box gene OMADS1, microarray analysis was performed from 35S::OMADS1-GR transgenic Arabidopsis after DEX treatment. 97 up-regulated and 68 down-regulated genes were identified in the microarray analysis respectively. Three significantly up-regulated genes TETRASPANIN 9 (TET9), AGAMOUS LIKE 18 (AGL18) and SUGAR TRANSPORTER PROTEIN 13 (STP13) were further analyzed. CArG boxes were identified in the promoter region of TET9, AGL18 and STP13. This suggested that TET9, AGL18 and STP13 could be the direct targets of OMADS1. The 35S::TET9 transgenic Arabidopsis showed male sterility due to the defects in anther dehiscence and development. Ectopic expression of STP13 in Arabidopsis caused early flowering probably due to the alteration of the glucose contents in transgenic plants. Ectopic expression of AGL18 did not cause obviously change in phenotype compared with wild-type Arabidopsis. The relationship between AGL6、OMADS1、up/down-regulated genes and genes for floral transition will be discussed (Chapter 3).
URI: http://hdl.handle.net/11455/36174
其他識別: U0005-1808200814545800
Appears in Collections:生物科技學研究所

Show full item record
 

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.