Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/36188
標題: | 烏龍茶與老茶的化學成分分析研究 Chemical Analysis of Oolong Tea and Old Oolong Tea |
作者: | 李思妧 Viola, S.Y.Lee |
關鍵字: | oolong tea;烏龍茶;catechins;mass spectrometry;flavonoid;theaflavin;兒茶素;質譜;黃酮類;茶黃素 | 出版社: | 生物科技學研究所 | 引用: | 1. Bronner, W. E. and Beecher, G. R.1998. Method for determining the content of catechins in tea infusions by high-performance liquid chromatography. J. Chromatogr., A 805: 137-142. 2. Cabrera, C., Gimenez, R. and Lopez, M. C. 2003. Determination of tea components with antioxidant activity. J. Agric. Food Chem. 51: 4427-4435. 3. Cross, H.J.,Tilby, M., Chipman, K., Ferry, D.R. and Gescher, A. 1996. Effect of quercetin on the genotoxic potential of cisplatin. Int. J. Cancer 66: 404-408. 4. Del Rio, D., Stewart, A. J., Mullen, W., Burns, J., Lean, M. E., Brighenti, F. and Crozier, A. 2004. HPLC-MSn analysis of phenolic compounds and purine alkaloids in green and black tea. J. Agric. Food Chem. 52: 2807-2815. 5. Dou, J., Lee, V.S., Tzen, J.T. and Lee, M.R. 2007. Identification and comparison of phenolic compounds in the preparation of oolong tea manufactured by semifermentation and drying processes. J. Agric. Food Chem. 55: 7462-7468. 6. Dou, J., Lee, V.S., Tzen, J.T. and Lee, M.R. 2008. Rapid identification of acylated flavonol tetraglycosides in oolong teas using HPLC-MSn. Phytochem. Anal. 19: 251-257. 7. Finger, A., Kuhr, S. and Engelhardt, U. H. 1992. Chromatography of tea constituents. J. Chromatogr. 624: 293-315. 8. Friedman, M. 2007. Overview of antibacterial, antitoxin, antiviral, andantifungal activities of tea flavonoids and teas. Mol. Nutr. Food Res. 51:116 - 134. 9. Goto, T., Yoshida, Y., Kiso, M. and Nagashima, H.1996. Simultaneous analysis of individual catechins and caffeine in green tea. J. Chromatogr., A 749: 295-299. 10. Harwood, M., Danielewska-Nikiel, B., Borzelleca, J.F., Flamm, G.W., Williams, G.M. and Lines, T.C. 2007. A critical review of the data related to the safety of quercetin and lack of evidence of in vivo toxicity, including lack of genotoxic/carcinogenic properties. Food Chem. Toxicol. 45: 2179-2205. 11. Hashimoto, F., Nonaka, G. and Nishioka, I. 1987. Tannins and related compounds. LVI. Isolation of four new acylated flavan-3-ols from oolong tea (1). Chem. Pharm. Bull. 35:611-616. 12. Hashimoto, F., Nonaka, G. and Nishioka, I. 1988. Tannins and related compounds. LXIX. Isolation and structure elucidation of B, B''-Linked bisflavanoids, theasinensins D-G and oolongtheanin from oolong tea (2). Chem. Pharm. Bull. 36: 1676-1684. 13. Hashimoto, F., Nonaka, G. and Nishioka, I. 1989. Tannins and related compounds. XC. 8-C-ascorbyl (-)-epigallocatechin 3-O-gallate and novel dimeric flavan -3-ols, oolonghomobisflavans A and B, from oolong tea (3). Chem. Pharm. Bull. 37: 3255-3263. 14. Haslam, E. 2003. Thoughts on thearubigins. Phytochemistry. 64: 61-73. 15. Higdon, J. V. 2002. Tea and Chronic Disease Prevention. Retrieved on 2008-09-09. 16. Higdon, J. V. and Frei, B. 2003. Tea catechins and polyphenols: Health effects, metabolism, and antioxidant functions. Crit. ReV. Food Sci. Nutr. 43: 89-143. 17. Ikan, R. 1991. Nature products. 2nd ed., pp.1. Academic Press, New York. 18. Lakenbrink, C., Engelhardt, U. H. and Wray, V. 1999. Identification of two novel proanthocyanidins in green tea. J. Agric. Food Chem. 47: 4621-4624. 19. Lee, V.S., Chen, R.J., Liao, Y.W., Tzen, J.T. and Chang, C.I. 2008. Structural determination and DPPH radical scavenging activity of two acylated flavonoid tetraglycosides in oolong tea (Camellia sinensis). Chem. Pharm. Bull. 56: 851-853. 20. Lin, J.-K., Lin, C.-L., Liang, Y.-C., Lin-Shiau, S.-Y. and Juan, I.-M. 1998. Survey of catechins, gallic acid, and methylxanthines in green, oolong, pu-erh, and black teas. J. Agric. Food Chem. 46: 3635-3642. 21. Middleton, E. Jr., Kandaswami, C., and Theoharides, T.C. 2000. The effects of plant flavonoids on mammalian cells: implications for inflammation, heart disease and cancer. Pharmacol. Rev. 42: 673-751. 22. Nonaka, G.-I., Kawahara, O. and Nishioka, I. 1983. Tannins and related compounds. XV. A new class of dimeric flavan-3-ol gallates, theasinensins A and B, and proanthocyanidin gallates from green tea leaf. (1). Chem. Pharm. Bull. 31: 3906-3914. 23. Perva-Uzunalic´, A., Sÿkerget, M., Knez, Zÿ ., Weinreich, B., Otto, F. and Gru¨ner, S. 2006. Extraction of active ingredients from green tea (Camellia sinensis): Extraction efficiency of major catechins and caffeine. Food Chem. 96: 597-605. 24. Poon, G. K. 1998. Analysis of catechins in tea extracts by liquid chromatography electrospray ionization mass spectrometry. J. Chromatogr., A 794: 63-74. 25. Price, K. R., Rhodes, M. J. C. and Barnes, K. A. 1998. Flavonol glycoside content and composition of tea infusions made from commercially available teas and tea products. J. Agric. Food Chem. 46: 2517-2522. 26. Sang, S. M., Lambert, J. D., Tian, S. Y., Hong, J. L., Hou, Z., Ryu, J. H., Stark, R. E., Rosen, R. T., Huang, M. T., Yang, C. S. and Ho, C. T. 2004. Enzymatic synthesis of tea theaflavin derivatives and their anti-inflammatory and cytotoxic activities. Bioorg. Med. Chem. 12: 459-467. 27. Wu, J., Xie, W. and Pawliszyn, J. 2000. Automated in-tube solid phase microextraction coupled with HPLC-ES-MS for the determination of catechins and caffeine in tea. Analyst 125: 2216-2222. 28. Yao, L., Jiang, Y., Datta, N., Singanusong, R., Liu, X., Duan, J., Raymont, K., Lisle, A. and Xu, Y. 2004. HPLC analyses of flavanols and phenolic acids in the fresh young shoots of tea (Camellia sinensis) grown in Australia. Food Chem. 84: 253-263. 29. Zeeb, D. J., Nelson, B. C., Albert, K. and Dalluge, J. J. 2000. Separation and identification of twelve catechins in tea using liquid chromatography/atmospheric pressure chemical ionization-mass spectrometry. Anal. Chem. 72: 5020-5026. 30. Goto, T.,Yoshida, Y., Kiso, M. and Nagashima, H. 1996. Simultaneous analysis of individual catechins and caffeine in green tea. J. Chromatogr. A. 749: 295-299. 31. Poon, G. K. 1998. Analysis of catechins in tea extracts by liquid chromatography electrospray ionization mass spectrometry. J. Chromatogr. A. 794: 63-74. 32. Sang S., Cheng X., Zhu N., Stark R. E., Badmaev V., Ghai G., Rosen R. T. and Ho C. T. 2001. Flavonol Glycosides and Novel Iridoid Glycoside from the Leaves of Morinda citrifolia. J. Agric. Food Chem. 49: 4478-4481. 33. Wu, J., Xie, W. and Pawliszyn, J. 2000. Automated in-tube solid phase micro- extraction coupled with HPLC-ES-MS for the determination of catechins and caffeine in tea. Analyst. 125: 2216-2222. 34. Agrawal P. K.1992. NMR spectroscopy in the structural elucidation of oligosaccharides and glycosides. Phytochemistry. 31:3307-3321. 35. Jayaprakasha G. K., Ohnishi-Kameyama M., Ono H., Yoshida M. and Jaganmohan Rao L. 2006. Phenolic Constituents in the Fruits of Cinnamomum zeylanicum and Their Antioxidant Activity. J. Agric. Food Chem. 54: 1672-1679. 36. Li X. L., Yang L. M., Zhao Y., Wang R. R., Xu G., Zheng Y. T., Tu L., Peng L. Y., Cheng X. and Zhao Q. S. 2007. Tetranorclerodanes and Clerodane-Type Diterpene Glycosides from Dicranopteris dichotoma. J. Nat. Prod. 70: 265-268. 37. Lin Y. L., Wang W. Y., Kuo Y. H. and Chen C. F. 2000. Nonsteroidal constituents from Solanum incanum L. J. Chin. Chem. Soc. 47:247-251. 38. Mihara R., Mitsunaga T., Fukui Y., Nakai M., Yamaji N. and Shibata H. 2004. A novel acylated quercetin tetraglycoside from oolong tea (Camelia sinensis) extracts Tetrahedron Lett. 45: 5077-5080. 39. Price K. R., Colquhoun I. J., Barnes K. A. and Rhodes M. J. C. 1998. Composition and Content of Flavonol Glycosides in Green Beans and Their Fate during Processing. J. Agric. Food Chem. 46: 4898-4903. 40. Sang S., Cheng X., Zhu N., Stark R. E., Badmaev V., Ghai G., Rosen R. T. and Ho C. T. 2001. Flavonol Glycosides and Novel Iridoid Glycoside from the Leaves of Morinda citrifolia. J. Agric. Food Chem. 49: 4478-4481. 41. Shimada K., Fujikawa K., Yahara K. and Nakamura T., 1992. Antioxidative properties of xanthan on the autoxidation of soybean oil in cyclodextrin emulsion. J. Agric. Food Chem., 40: 945-948. 42. Wang M., Kikuzaki H., Csiszar K., Boyd C. D., Maunakea A., Fong S.F., Ghai G., Rosen R. T., Nakatani N. and Ho C. T. 1999. Novel Trisaccharide Fatty Acid Ester Identified from the Fruits of Morinda citrifolia (Noni). J. Agric. Food Chem.47: 4880-4882. 43. Aherne, S.A. and O''Brien, N.M. 2002. Dietary flavonols: chemistry, food content, and metabolism. Nutrition. 18: 75-81. 44. Constant, J. 1997. Alcohol, ischemic heart disease, and the French paradox. Coron. Artery Dis. 8: 645-649. 45. Inoue, M., Suzuki, R., Koide, T., Sakaguchi, N., Ogihara, Y. and Yabu, Y. 1994. Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochem. Biophys. Res. Commun. 204: 898-904. 46. Jadon, A., Bhadauria, M. and Shukla, S. 2007. Protective effect of Terminalia belerica Roxb. and gallic acid against carbon tetrachloride induced damage in albino rats. J. Ethnopharmacol. 109: 214-218. 47. Kim, Y.-J. 2007. Antimelanogenic and antioxidant properties of gallic acid. Biol. Pharm. Bull. 30: 1052-1055. 48. Liu, Z.; Schwimer, J.; Liu, D.; Greenway, F. L.; Anthony, C. T.; Woltering, E. A. Black raspberry extract and fractions contain angiogenesis inhibitors. J. Agric. Food Chem. 2005, 53, 3909-3915. 49. Lotito, S.B. and Frei, B. 2006. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic. Biol. Med. 41: 1727-1746. 50. Raina, K., Rajamanickam, S., Deep, G., Singh, M., Agarwal, R. and Agarwal, C. 2008. Chemopreventive effects of oral gallic acid feeding on tumor growth and progression in TRAMP mice. Mol. Cancer Ther. 7: 1258-1267. 51. Sridhar, S. B., Sheetal, U. D., Pai, M. R. and Shastri, M. S. 2005. Preclinical evaluation of the antidiabetic effect of Eugenia jambolana seed powder in streptozotocin-diabetic rats. Braz. J. Med.Biol. Res. 38: 463-468. 52. Wang, R., Zhou, W. and Jiang, X. 2008. Reaction kinetics of degradation and epimerization of epigallocatechin gallate (EGCG) in aqueous system over a wide temperature range. J. Agric. Food Chem. 56: 2694-2701. 53. Inoue, M., Suzuki, R., Koide, T., Sakaguchi, N., Ogihara, Y. and Yabu, Y. 1994. Antioxidant, gallic acid, induces apoptosis in HL-60RG cells. Biochem. Biophys. Res. Commun. 204: 898-904. 54. Lee, V.S., Dou, J., Chen, R.J., Lin, R.S., Lee, M.R. and Tzen, J.T. 2008. Massive accumulation of gallic acid and unique occurrence of myricetin, quercetin, and kaempferol in preparing old oolong tea. J. Agri. Food Chem. 56: 7950-7956. 55. Lotito, S.B. and Frei, B. 2006. Consumption of flavonoid-rich foods and increased plasma antioxidant capacity in humans: cause, consequence, or epiphenomenon? Free Radic. Biol. Med. 41: 1727-1746. | 摘要: | 烏龍茶是經過部分發酵所製成的茶葉,是一種味道與色澤界於綠茶與紅茶之間的茶種。不同的烏龍茶湯會因為其製成的差異而有不同,尤其是酚類化合物可以利用高效液相層析(High-performance liquid chromatography) 與紫外偵測器或電噴灑離子化串聯式質譜(electrospray ionization tandem mass spectrometry)進行分析茶所改變的組成成分。因此分析烏龍茶組成成分,共分析出2個生物鹼(alkaloids),11個黃烷醇(flavanols),8個有機酸和酯類, 11個原花青素二聚體(proanthocyanidin dimmers),3個茶黃素(theaflavins)和22個總黃酮類(flavonoid glycosides),其中包含6個醯化黃酮醇配醣體(acylated flavonol glycosides)。利用光譜方法分析其中兩個主要的醯化黃酮醇配醣體的結構,分別為quercetin 3-O-[2G-(E)-coumaroyl-3G-O-β -D-glucosyl-3R-O-β-D-glucosylrutinoside] 和 kaempferol 3-O-[2G-(E)-coumaroyl-3G-O-β-D-glucosyl-3R-O-β-D- glucosylrutinoside]。烏龍老茶為上等茶,經長期的保存並且伴隨著周期性的烘培達到精緻化所製備而成,經驗上被認為對於人體健康有益。分析三種老茶與一種新製備的烏龍茶的茶湯成分,比較兩者發現,在老茶中其EGCG 〔(-)-epigallocatechin gallate〕會顯著降低而沒食子酸卻大量增加,並且一些特殊的黃酮類( myricetin、quercetin和kaempferol )會出現,推測可能是原本烏龍茶中的總黃酮類裂解所產生。 Oolong tea manufactured via a semifermentation process possesses a taste and color somewhere between green and black teas. Alteration of constituents, particularly phenolic compounds, in the infusion of oolong tea resulted from its manufacture, was analyzed by high-performance liquid chromatography coupled to ultraviolet absorbance or electrospray ionization tandem mass spectrometry. The identified contained 2 alkaloids, 11 flavan-3-ols, 8 organic acids and esters, 11 proanthocyanidin dimers, 3 theaflavins, and 22 flavonoid glycosides, including 6 novel acylated flavonol glycosides. The structures of two major acylated flavonol tetraglycosides were elucidated by spectroscopic methods as quercetin 3-O-[2G-(E)-coumaroyl-3G-O-β-D-glucosyl-3R-O-β-D-glucosylrutinoside] and kaempferol 3-O-[2G-(E)-coumaroyl-3G-O-β-D-glucosyl-3R-O-β -D- glucosylrutinoside]. Old oolong tea, tasting superior and empirically considered beneficial for human health, is prepared by long-term storage accompanied with periodic drying for refinement. Analyzing infusions of three old and one newly prepared oolong teas showed that significant lower (-)-epigallocatechin gallate (EGCG) but higher gallic acid contents were detected and unique occurrence of flavonols (myricetin, quercetin,and kaempferol) putatively decomposed from flavonol glycosides was observed in the old teas compared with the new one. |
URI: | http://hdl.handle.net/11455/36188 | 其他識別: | U0005-2410200815140200 |
Appears in Collections: | 生物科技學研究所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.