Please use this identifier to cite or link to this item: http://hdl.handle.net/11455/3619
標題: 磁性黏土/聚乙烯醇奈米複合材料之製備與物性分析
The Preparation and Physical Characterization of Magnetic Clay/Poly(vinyl alcohol) Nanocomposites
作者: 李小如
Lee, Hsiao-Ju
關鍵字: 四氧化三鐵;Fe3O4;黏土;聚乙烯醇;Clay;PVA
出版社: 化學工程學系所
引用: 1. Ramirez, L. P.; Landfester, K. Macromol. Chem. Phys., 204, 22 (2003) 2. 金重勳,“磁性技術手冊”,中華民國磁性技術協會,P 6~7 (2002) 3. Si, S., Li, C.; Wang, X.; Yu, D.; Peng, Q.; Li, Y. Crystal Growth & Design, 5, 391 (2005) 4. 劉伊郎、陳恭,“物理雙月刊”,第二十二卷六期,P 592~593 (2000) 5. 黃振隆、葉芳耀、陳玟溢、林美秀,“工業材料雜誌”,第224期, P 134~141 (2005) 6. Chuang, W. Y.; Young, T. H.; Chiu, W. Y.; Lin, C. Y. Polymer, 41, 5633 (2000) 7. Silva, E. D.; Lebrun, L.; Metayer, M. Polymer, 43, 5311 (2002) 8. Brazel, C. S.; Peppas, N. A. Polymer, 40, 3383 (1999) 9. Oh, K. S.; Han, S. K.; Choi, Y. W.; Lee, H. J.; Lee, J. Y.; Yuk, S. H. Biomaterials, 25, 2393 (2004) 10. Young, T. H.; Chuang, W. Y.; Hsieh, M. Y.; Chen, L. W.; Hsu, J. P. Biomaterials, 23, 3495 (2002) 11. Kobayashi, M.; Toguchida, J.; Oka, M. Biomaterials, 24, 639 (2003) 12. Lopez, D.; Cendoya, I.; Torres, F.; Tejada, J.; Mijangos, C. Journal of Applied Polymer Science, 82, 3215 (2001) 13. Xu, J.; Meng, Y. Z.; Li, R. K. Y.; Xu, Y.; Rajulu, A. V. Journal of Polymer Science : PartB : Polymer Physics, 41, 749 (2003) 14. Peng, Z.; Kong, L. X.; Li, S. D. Journal of Applied Polymer Science, 96, 1436 (2005) 15. Yudelson, J. S. U. S. Patent 4,965,007 (1990) 16. Mendenhall, G. D.; Geng, Y.; Hwang, J. J. Colloid Interface Sci., 184, 519 (1996) 17. Lee, J.; Isobe, T.; Senna, M. J. Colloid Interface Sci., 177, 490 (1996) 18. Wormuth, K. J. Colloid Interface Sci., 241, 366 (2001) 19. Deng, J.; Peng, Y.; He, C.; Long, X.; Li, P.; Chan, A. S. C. Polym Int 52 : 1182-1187 (2003) 20. Caruntu, D.; Caruntu, G.; Chen, Y.; O’Connor, C. J.; Goloverda, G.; Kolesnicheno, V. L. Chem. Mater., 16, 5527 (2004) 21. Sun, S. U. S. Patent 6,962,685 (2005) 22. Yang, T.; Shen, C.; Li, Z.; Zhang, H.; Xiao, C.; Chen, S.; Xu, Z.; Shi, D.; Gao, H. J. Phys. Chem. B, 109, 23233 (2005) 23. Godovsky, D. Y.; Varfolomeev, A. V.; Efremova, G. D. Adv. Mater. Opt. Electron., 9, 87 (1999) 24. Kumar, R. V.; Koltypin, Y.; Cohen, Y. S.; Cohen, Y.; Aurbach, D.; Palchik, O.; Felner, I.; Gedanken, A. J. Mater. Chem., 10, 1125 (2000) 25. Sindhu, S.; Jegadesan, S.; Parthiban, A.; Valiyaveettil, S. Journal of Magnetism and Magnetic Materials, 296, 104 (2006) 26. Albornoz, C.; Jacobo, S. E. Journal of Magnetism and Magnetic Materials, 305, 12 (2006) 27. Hong, R. Y.; Zhang, S. Z.; Han, Y. P.; Li, H. Z.; Ding, J.; Zheng, Y. Powder Technology, 170, 1 (2006) 28. Strawhecker, K. E.; Manias, E. Chem. Mater., 12, 2943 (2000) 29. Yu, Y. H.; Lin, C. Y.; Yeh, J. M.; Lin, W. H. Polymer, 44, 3553 (2003) 30. Chang, J. H.; Jang, T. G.; Ihn, K. J.; Lee, W. K.; Sur, G. S. Journal of Applied Polymer Science, 90, 3208 (2003) 31. Yeun, J. H.; Bang, G. S.; Park, B. J.; Ham, S. K.; Chang, J. H. Journal of Applied Polymer Science, 101, 591 (2006) 32. American Society for Testing and Materials, Annual book of ASTM standards. Section 8, Plastics, vol 08.01., D 638M, page 167~175 (1990) 33. Yan, S.; Geng, J.; Yin, L.; Zhou, E. Journal of Magnetism and Magnetic Materials, 277, 84 (2004) 34. Li, F.; Wang, H.; Wang, L.; Wang, J. Journal of Magnetism and Magnetic Materials, 309, 295 (2007) 35. Chen, S.; Feng, J.; Guo, X.; Hong, J.; Ding, W. Materials Letters, 59, 985 (2005) 36. Wan, M.; Li, J. Journal of Polymer Science : PartA : Polymer Chemistry, 36, 2799 (1998) 37. Zrinyi, M.; Barsi, L.; Buki, A. Polymer Gels and Networks, 5, 415 (1997) 38. Ding, X. B.; Sun, Z. H.; Wan, G. X.; Jiang, Y. Y. Reactive & Functional Polymers, 38, 11 (1998) 39. Harris, L. A.; Goff, J. D.; Carmichael, A. Y.; Riffle, J. S.; Harbum, J. J.; Pierre, T. G. S.; Saunders, M. Chem. Mater., 15, 1367 (2003) 40. Lin, H.; Watanabe, Y.; Kimura, M.; Hanabusa, K.; Shirai, H. Journal of Applied Polymer Science, 87, 1239 (2003) 41. Abu-Much, R.; Meridor, U.; Frydman, A.; Gedanken, A. J. Phys. Chem. B, 110, 8194 (2006) 42. Mbhele, Z. H.; Salemane, M. G.; Van Sittert, C. G. C. E.; Nedeljkovic, J. M.; Djokovic, V.; Luyt, A. S. Chem. Mater., 15, 5019 (2003) 43. Ogata, N.; Kawakage, S.; Ogihara, T. Journal of Applied Polymer Science, 66, 573 (1997)
摘要: 
本研究利用共沉澱法在水相溶液中合成具有超順磁特性的四氧化三鐵奈米粒子,粒徑約小於10 nm;且藉由添加不同的界面活性劑來探討四氧化三鐵的特性。再者將四氧化三鐵磁性流體吸附凝集於黏土水溶液中來形成具有磁性的黏土,由震盪樣品測磁儀分析其矯頑磁力 (Hc) 皆小於30 Oe,表示幾乎無任何的磁滯現象,故屬於具有超順磁性的磁性黏土,且隨著四氧化三鐵的添加,實際氧化鐵的飽和磁化量為49.62 ~ 72.14 emu/g Fe3O4,皆比純四氧化三鐵磁粉Ms = 42.43 emu/g 來得高;由XRD結果可知隨著四氧化三鐵含量的增加,其2θ=1.5°~10°之間的繞射峰會漸向左移且漸消失,意味著四氧化三鐵與黏土之間的分散性良好,可有效破壞黏土層間的作用力。另ㄧ方面,將四氧化三鐵添加入聚乙烯醇高分子中形成複合材材,其磁性方面也顯示屬於超順磁性材料,熱性質分析方面則因四氧化三鐵的添加,破壞聚乙烯醇高分子鏈間的立體結構,影響其穩定度,故熱裂解溫度比純聚乙烯醇下降約12~21 ℃左右,拉伸測試方面則隨著四氧化三鐵含量的增加,其抗張強度會減少,但仍比純聚乙烯醇來得高,抗張模數則增加3~5倍,延伸率則下降。最後再將磁性黏土混摻到聚乙烯醇高分子中形成奈米複合材料,磁性分析方面複材之矯頑磁力範圍約0.28 ~1.71 Oe 之間,屬於超順磁特性;且隨著四氧化三鐵的增加,由1.59 % 提升到13.89 %,複材的飽和磁化量和實際氧化鐵飽和磁化量也隨之增加,分別為0.65提升到8.01 emu/g Fe3O4-Clay-PVA 和40.88提升到57.67 emu/g Fe3O4 。熱性質方析方面,無機物黏土的添加有效提升了聚乙烯醇高分子之熱安定性,然而添加少量四氧化三鐵磁粉時,複材的熱裂解性質較好,但若四氧化三鐵磁粉太過量時,則熱裂解溫度反而會下降。奈米複材中則隨著四氧化三鐵的增加,Tg上升了4~10 ℃,Tm則下降了約2~17 ℃,Tc亦下降,ΔHm和ΔHc也隨之下降。拉伸測試方析方面,隨著四氧化三鐵磁粉的添加,由1.59 wt% 提升到13.89 wt%,其複材的抗張模數從496.0增加到888.9 MPa,然而抗張強度與斷裂點延伸率方面則無太明顯的變化。

In this study, superparamagnetic Fe3O4 nanoparticles was synthesized by coprecipitation method under the addition of various surfactants to investigate their particle size. Fe3O4 was found to have an average diameter of less than 10 nm. Besides, the Fe3O4 magnetic fluid was employed to be absorbed on clay surface to form magnetic clay. The magnetic clay was measured by Vibration Sample Magnetometer (VSM) and gives the coercive force below 30 Oe with no apparent indication of hysteresis loop that bears the characteristic of superparamagnetic materials. With the increased addition of Fe3O4 in clay, the saturation magnetization of iron oxide is increased from 49.62 to 72.14 emu/g Fe3O4, this is higher than that of pure Fe3O4 which has Ms of 42.43 emu/g. XRD results showed that the diffraction peak between 2θ=1.5°~ 8°is shifted to left and vanish gradually with an increased content of Fe3O4 in clay. This means a good dispersion achieved between Fe3O4 nanoparticles and clay platlets due to the electrostatic attraction force. On the other hand, composites were also prepared by mixing the Fe3O4 with the PVA polymer in aqueous solution. The VSM measurements also reveals the superparamagnetic behavior for the composite. Comparison of thermal properties of pure PVA polymer and its composite with Fe3O4 showed that the thermal degradation temperature is reduced by about 12 ~ 21 ℃ due to the presence of magnetite nanoparticles. With the increased addition of Fe3O4 in the composites, the tensile strengths of most samples decrease, but were still higher than that of pure PVA. On the other hand, the tensile moduli increase up to 3 ~ 5 times and the elongation at break decreases. Subsequently, the prepared magnetic clay is then blended with PVA polymer to form magnetic polymer nanocomposite, and the coercive force of composites are located between 0.28 ~ 1.71 Oe. An increase in Fe3O4 content from 1.59 % to 13.89 % increases the saturated magnetization of composites from 0.65 to 8.01 emu/g Fe3O4-Clay-PVA and increases the saturated magnetization of iron oxide from 40.88 to 57.67 emu/g Fe3O4. Thermal properties of the PVA polymers are improved by the addition of clay. For a lower content of Fe3O4, the decomposition temperature is higher. By contrast, for the high loading of Fe3O4, the decomposition temperatures decrease. It was found that the addition of magnetic clay in PVA improves the glass transition temperature of PVA to 4 ~ 10 ℃, but decreases the melting point to 2 ~ 17 ℃. Also, the melting enthalpy, heat of crystallization and crystallization temperature for the PVA based composites also decreased with Fe3O4 loading. Furthermore, the tensile modulus increases from 496.0 MPa to 888.9 MPa when the Fe3O4 loading is increased from 1.59 wt% to 13.89 wt%. On the other hand, the variations in both the tensile strength and the elongation at break are not significant.
URI: http://hdl.handle.net/11455/3619
其他識別: U0005-0907200716210600
Appears in Collections:化學工程學系所

Show full item record
 
TAIR Related Article

Google ScholarTM

Check


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.