Please use this identifier to cite or link to this item:
http://hdl.handle.net/11455/36191
標題: | 研究傳染性華氏囊病毒次病毒顆粒VP2蛋白
表面胺基酸His249與His253對鎳離子
之親合性及免疫原性的影響 Investigation of the roles of two surface residues His249&His253 on the affinity to the immobilized Ni2+ ions and immunogenicity of infectious bursal disease virus VP2 subviral particles |
作者: | 楊函蓁 Yang, Han-Jen |
關鍵字: | infectious bursal disease virus;傳染性華氏囊病毒;Ni ions;immunogenicity;鎳離子;免疫原性 | 出版社: | 生物科技學研究所 | 引用: | 參考文獻 陳宜輝, (2007)。利用點突變探討傳染性華氏囊病病毒VP2蛋白中His249與His253對於IBDV次病毒顆粒與固定化金屬親和性管柱親和力之重要性。碩士論文。中興大學生物科技學研究所。台中。中華民國。 董學儒,(2006)。家禽傳染性華氏囊病病毒與VP2次病毒顆粒對固定化鎳離子之異相吸附。博士論文。中央大學化學工程研究所。中壢。中華民國。 林育江,(2003)。傳染性華氏囊病毒結構蛋白VP2之C端區域對形成似病毒顆粒及免疫力之影響。碩士論文。中興大學生物科技學研究所。台中。中華民國。 蔡倩妞,(2002)。傳染性雞華氏囊病毒的VP2蛋白於大腸桿菌中組裝成次微米級似病毒顆粒之研究。碩士論文。中興大學生物科技學研究所。台中。中華民國。 何靜宜,(2006)。傳染性華氏囊病毒的VP2蛋白N端及C端序列對於T=1次病毒顆粒的組裝與純化及免疫原性之影響。博士論文。中興大學生物科技學研究所。台中。中華民國。 張程凱,(2008)。利用固定化金屬親和性管柱純化傳染性華氏囊病毒之研究。碩士論文。中興大學生物科技學研究所。台中。中華民國。 Arnold, F.H. (1991). Metal-affinity separations: a new dimension in protein processing. Biotechnology (NY) 9:151-6. Azad, A.A., Barrett, S.A., and Fahey, K.J. (1985). The characterization and molecular cloning of the double-stranded RNA genome of an Australian strain of infectious bursal disease virus. Virology 143:35-44. Azad, A.A., Jagadish, M.N., Brown, M.A., and Hudson, P.J. (1987). Deletion mapping and expression in Escherichia coli of the large genomic segment of a birnavirus. Virology 161:145-152. Azad, A.A., McKern, N.M., Macreadie, I.G., Failla, P., Heine, H.G., Chapman, A., Ward, C.W., and Fahey, K.J. (1991). Physicochemical and immunological characterization of recombinant host-protective antigen (VP2) of infectious bursal disease virus. Vaccine 9:715-722. Baas, P.D., Teertstra, W.R., van Mansfeld, A.D., Jansz, H.S., van der Marel, G.A., Veeneman, G.H. & van Boom, J.H. (1981). Construction of viable and lethal mutations in the origin of bacteriophage ''phi'' X174 using synthetic oligodeoxyribonucleotides. J Mol Biol 152:615-39. Becht, H., Müller, H., and Müller, H.K. (1988). Comparative studies on structural and antigenic properties of two serotypes of infectious bursal disease virus. J. Gen. Virol. 69:631-640. Birghan, C., Mundt, E., and Gorbalenya, A.E. (2000). A non-canonical lon proteinase lacking the ATPase domain employs the ser-Lys catalytic dyad to exercise broad control over the life cycle of a double-stranded RNA virus. Embo J 19:114-123. Blaber, M., Baase, W.A., Gassner, N. & Matthews, B.W. (1995). Alanine scanning mutagenesis of the alpha-helix 115-123 of phage T4 lysozyme: effects on structure, stability and the binding of solvent. J Mol Biol 246:317-30. Böttcher, B., Kiselev, N.A., Stel''Mashchuk, V.Y., Perevozchikova, N.A., Borisov, A.V., and Crowther, R.A. (1997). Three-dimensional structure of infectious bursal disease virus determined by electron cryomicroscopy. J. Virol. 71:325-330. Carter, E.D. (1986). Scientific and political issues in evaluating new technology: the case of shock wave lithotripsy. Isr J Med Sci 22:231-6. Casal, J.I., Rueda, P. & Hurtado, A. (1999). Parvovirus-like particles as vaccine vectors. Methods 19:174-86. Caspar, D. L. D., and A. Klug. 1962. A physical principles in the construction of regular viruses. Quant. Biol. 27:1-24. Chaga, G.S. (2001). Twenty-five years of immobilized metal ion affinity chromatography: past, present and future. J Biochem Biophys Methods 49:313-34. Charles, A. D., Gautier, A.E., Edge, M.D. & Knowles, J.R. (1982). Targeted point mutation that creates a unique Eco RI site within the signal codons of the beta-lactamase gene without altering enzyme secretion of processing. J Biol Chem 257:7930-2. Corden, J., Wasylyk, B., Buchwalder, A., Sassone-Corsi, P., Kedinger, C. & Chambon, P. (1980). Promoter sequences of eukaryotic protein-coding genes. Science 209:1406-14. Cosgrove, A.S. (1962). An Apparently New Disease of Chickens: Avian Nephrosis. Avian Diseases 6:385-389. Coulibaly, F., Chevalier, C., Gutsche, I., Pous, J., Navaza, J., Bressanelli, S., Delmas, B. & Rey, F.A. (2005). The birnavirus crystal structure reveals structural relationships among icosahedral viruses. Cell 120:761-72. Cowen, B.S., and Braune, M.O. (1988). The propagation of avian viruses in a continuous cell line (QT35) of Japanese quail origin. Avian Dis 32:282-297. Craik, J.D. & Reithmeier, R.A. (1985). Reversible and irreversible inhibition of phosphate transport in human erythrocytes by a membrane impermeant carbodiimide. J Biol Chem 260:2404-8. Cui, X., H.S. Nagesha, and I.H. Holmes. (2003). Mapping of conformational epitopes on capsid protein VP2 of infectious bursal disease virus by fd-tet phage display. J Virol Methods 114:109-12. Dimitrov, D.S. (2004). Virus entry: molecular mechanisms and biomedical applications. Nat Rev Microbiol 2: 109-122. Doong, S.R., Chen, Y.H., Lai, S.Y., Lee, C.C., Lin, Y.C. & Wang, M.Y. (2007). Strong and Heterogeneous Adsorption of Infectious Bursal Disease VP2 Subviral Particle with Immobilized Metal Ions Dependent on Two Surface Histidine Residues. Anal. Chem. 79: 7654-7661. Eriksson, A.E., Baase, E.A., Wozniak, J.A. & Matthews, B.W. (1992). A cavity-containing mutant of T4 lysozyme is stabilized by buried benzene. Nature 355: 371-3. Fahey, K.J., Erny, K., and Crooks, J. (1989). A conformational immunogen on VP-2 of infectious bursal disease virus that induces virus-neutralizing antibodies that passively protect chickens. J. Gen. Virol. 70:1473-1481. Gaberc-Porekar, V. & Menart, V. (2001). Perspectives of immobilized-metal affinity chromatography. J Biochem Biophys Methods 49:335-60. Gillam, S., Astell, C.R., Jahnke, P., Hutchison, C.A., 3rd & Smith, M. (1984). Construction and properties of a ribosome-binding site mutation in gene E of phi X174 bacteriophage. J Virol 52: 892-6. Gotoh, O. (1992). Substrate recognition sites in cytochrome P450 family 2 (CYP2) proteins inferred from comparative analyses of amino acid and coding nucleotide sequences. J Biol Chem 267:83-90. Granzow, H., Birghan, C., Mettenleiter, T.C., Beyer, J., Kollner, B., and Mundt, E. (1997). A second form of infectious bursal disease virus-associated tubule contains VP4. J. Virol. 71:8879-8885. Hanna, I. H., Roberts, E.S. & Hollenberg, P.F. (1998). Molecular basis for the differences in lidocaine binding and regioselectivity of oxidation by cytochromes P450 2B1 and 2B2. Biochemistry 37:311-8. He, Y.A., Balfour, C.A., Kedzie, K.M. & Halpert, J.R. (1992). Role of residue 478 as a determinant of the substrate specificity of cytochrome P450 2B1. Biochemistry 31:9220-6. He, Y., Li, J., Jiang, S. (2006). A single amino acid substitution (R441A) in the receptor-binding domain of SARS coronavirus spike protein disrupts the antigenic structure and binding activity. Biochemical and Biophysical Research Communications 344:106-113. Heine, H.G., M. Haritou, P. Failla, K. Fahey, and A. Azad. (1991). Sequence analysis and expression of the host-protective immunogen VP2 of a variant strain of infectious bursal disease virus which can circumvent vaccination with standard type I strains. J. Gen. Virol. 72:1835-43. Hihara, H., Yamamoto, H., Arai, K., Okazaki, W., and Shimizu, T. (1980). Conditions for successful cultivation of tumor cells from chickens with avian lymphoid leukosis. Avian Dis 24: 971-979. Hudson, P.J., McKern, N.M., Power, B.E., and Azad, A.A. (1986). Genomic structure of the large RNA segment of infectious bursal disease virus. Nucleic Acids Res 14:5001-5012. Hutchison, C.A., 3rd, Phillips, S., Edgell, M.H., Gillam, S., Jahnke, P. & Smith, M. (1978). Mutagenesis at a specific position in a DNA sequence. J Biol Chem 253:6551-60. Itakura, K., Rossi, J.J. & Wallace, R.B. (1984). Synthesis and use of synthetic oligonucleotides. Annu Rev Biochem 53:323-56. Jagadish, M.N., Staton, V.J., Hudson, P.J., and Azad, A.A. (1988). Birnavirus precursor poly protein is processed in Escherichia coli by its own virus-encoded polypeptide. J. Virol. 62:1084-1087. Jiang, C., Wechuck, J.B., Goins, W.F., Krisky, D.M., Wolfe, D., Ataai, M.M. & Glorioso, J.C. (2004). Immobilized cobalt affinity chromatography provides a novel, efficient method for herpes simplex virus type 1 gene vector purification. J Virol 78: 8994-9006. Johnson, J.E. (1996). Functional implications of protein-protein interactions in icosahedral viruses. Proc Natl Acad Sci USA 93:27-33. Johnson, R.D. & Arnold, F.H. (1995). The Temkin isotherm describes heterogeneous protein adsorption. Biochim Biophys Acta 1247:293-7. Johnson, R.D., Todd, R.J. & Arnold, F.H. (1996). Multipoint binding in metal-affinity chromatography II. Effect of pH and imidazole on chromatographic retention of engineered histidine-containing cytochromes c. J Chromatogr A 725:225-35. Kibenge, F.S., Dhillon, A.S., and Russell, R.G. (1988). Biochemistry and immunology of infectious bursal disease virus. J. Gen. Virol. 69:1757-1775. Kobayashi, Y., Fang, X., Szklarz, G.D. & Halpert, J.R. (1998). Probing the active site of cytochrome P450 2B1:metabolism of 7-alkoxycoumarins by the wild type and five site-directed mutants. Biochemistry 37:6679-88. Kochan, G., Gonzalez, D., and Rodriguez, J.F. (2003). Characterization of the RNA-binding activity of VP3, a major structural protein of Infectious bursal disease virus. Arch Virol 148:723-744. Lakshmi P.P., David R.B., Timothy J.L., and Chenming Z. (2006). Correlation between Protein Binding Strength on Immobilized Metal Affinity Chromatography and the Histidine-Related Protein Surface Structure. Anal. Chem. 78:4443-4449. Lee, C.C., Ko, T.P., Chou, C.C., Yoshimura, M., Doong, S.R., Wang, M.Y., and Wang, A.H. (2006). Crystal structure of infectious bursal disease virus VP2 subviral particle at 2.6Å resolution: implications in virion assembly and immunogenicity. J Struct Biol 155:74-86. Lee, C.C., Ko, T.P., Lee, M.S., Chou, C.C., Lai, S.Y., Wang, A.H., and Wang, M.Y. (2003). Purification, crystallization and preliminary X-ray analysis of immunogenic virus-like particles formed by infectious bursal disease virus (IBDV) structural protein VP2. Acta Crystallogr D Biol Crystallogr 59:1234-1237. Lejal, N., Da Costa, B., Huet, J.C., and Delmas, B. (2000). Role of Ser-652 and Lys-692 in the protease activity of infectious bursal disease virus VP4 and identification of its substrate cleavage sites. J. Gen. Virol. 81:983-992. Louie, G.V. & Brayer, G.D. (1990). High-resolution refinement of yeast iso-1-cytochrome c and comparisons with other eukaryotic cytochromes c. J Mol Biol 214:527-55. Macreadie, I.G., Ward, C.W., Fahey, K.J., and Azad, A.A. (1990). Passive protection against infectious bursal disease virus by viral VP2 expressed in yeast. Vaccine 8:549-552. Maraver, A., Clemente, R., Rodriguez, J.F., and Lombardo, E. (2003a). Identification and molecular characterization of the RNA polymerase-binding motif of infectious bursal disease virus inner capsid protein VP3. J. Virol. 77:2459-2468. Maraver, A., Ona, A., Abaitua, F., Gonzalez, D., Clemente, R., Ruiz-Diaz, J.A., Caston, J.R., Pazos, F., and Rodriguez, J.F. (2003b). The oligomerization domain of VP3, the scaffolding protein of infectious bursal disease virus, plays a critical role in capsid assembly. J. Virol. 77:6438-6449. Morgan, M.M., Macreadie, I.G., Harley, V.R., Hudson, P.J., and Azad, A.A. (1988). Sequence of the small double-stranded RNA genomic segment of infectious bursal disease virus and its deduced 90-kDa product. Virology 163:240-242. Muller, H. (1986). Replication of infectious bursal disease virus in lymphoid cells. Arch Virol 87:191-203. Mundt, E., Beyer, J., and Müller, H. (1995). Identification of a novel viral protein in infectious bursal disease virus-infected cells. J. Gen. Virol. 76:437-443. Mundt, E., Kollner, B., and Kretzschmar, D. (1997). VP5 of infectious bursal disease virus is not essential for viral replication in cell culture. J. Virol. 71:5647-5651. Nick, H., Cursiefen, D., and Becht, H. (1976). Structural and growth characteristics of infectious bursal disease virus. J. Virol. 18:227-234. Ogawa, M., Yamaguchi, T., Setiyono, A., Ho, T., Matsuda, H., Furusawa, S., Fukushi, H., and Hirai, K. (1998). Some characteristics of a cellular receptor for virulent infectious bursal disease virus by using flow cytometry. Arch Virol 143:2327-2341. Okoye, J.O., and Uzoukwu, M. 1981. An outbreak of infectious bursal disease among chickens between 16 and 20 weeks old. Avian Dis 25:1034-1038. Ozel, M., and Gelderblom, H. (1985). Capsid symmetry of viruses of the proteins associated with steroid receptors. Semin Cell Biol 5:83-93. Porath, J. (1992). Immobilized metal ion affinity chromatography. Protein Expr Purif 3:263-81. Sharma, S. & Agarwal, G.P. (2001). Interactions of proteins with immobilized metal ions: a comparative analysis using various isotherm models. Anal Biochemistry 288: 126-40. Shortle, D., Stites, W.E. & Meeker, A.K. (1990). Contributions of the large hydrophobic amino acids to the stability of staphylococcal nuclease. Biochemistry 29:8033-41. Simoni, I.C., Fernandes, M.J.B., Custódio, R.M., Madeira, A.M.B.N., and Arns3, C.W. (1999). Susceptibility of cell lines to avian viruses. Revista de Microbiologia 30:373-376. Smith, A.E., and Helenius, A. (2004). How Viruses Enter Animal Cells. Science 304:237-242. Spies, U., Müller, H., and Becht, H. (1987). Properties of RNA polymerase activity associated with infectious bursal disease virus and characterization of its reaction products. Virus Res 8:127-140. Sulkowski, E. (1989). The saga of IMAC and MIT. Bioessays 10:170-5. Todd, R.J., Johnson, R.D. & Arnold, F.H. (1994). Multiple-site binding interactions in metal-affinity chromatography. I. Equilibrium binding of engineered histidine-containing cytochromes c. J Chromatogr A 662:13-26. Tsukamoto, K., Matsumura, T., Mase, M., and Imai, K. (1995). A highly sensitive, broad-spectrum infectivity assay for infectious bursal disease virus. Avian Dis 39:575-586. Uehara, Y. (2003). Natural product origins of Hsp90 inhibitors. Curr Cancer Drug Targets 3:325-330. Van Loon, A.A., de Haas, N., Zeyda, I., and Mundt, E. (2002). Alteration of amino acids in VP2 of very virulent infectious bursal disease virus results in tissue culture adaptation and attenuation in chickens. J. Gen. Virol. 83:121-129. Vladka G.P., and Viktor M. (2001). Perspectives of immobilized-metal affinity chromatography. J. Biochem. Biophys. Methods 49:335-360. Wallace, R.B., Johnson, P.F., Tanaka, S., Schold, M., Itakura, K. & Abelson, J. (1980). Directed deletion of a yeast transfer RNA intervening sequence. Science 209:1396-400. Wang, M.Y., Kuo, Y.Y., Lee, M.S., Doong, S.R., Ho, J.Y., and Lee, L.H. (2000). Self-assembly of the infectious bursal disease virus capsid protein, rVP2, expressed in insect cells and purification of immunogenic chimeric rVP2H particles by immobilized metal-ion affinity chromatography. Biotechnol Bioeng 67:104-111. Wang, X N., Zhang, G.P., Zhou, J.Y., Feng, C.H., Yang, Y.Y., Li, Q.M., Guo, J.Q., Qiao, H.X., Xi, J., Xing, G.X., Wang, Z.L., Wang, S.H., Xiao, Z.J., Li, X.W. and Deng, R.G. (2005). Identification of neutralizing epitopes on the VP2 protein of infectious bursal disease virus by phage-displayed heptapeptide library screening and synthetic peptide mapping. Viral Immunol 18:549-57. Wallace, R.B., Johnson, P.F., Tanaka, S., Schold, M., Itakura, K. & Abelson, J. (1980). Directed deletion of a yeast transfer RNA intervening sequence. Science 209:1396-400. Wyeth, Pj., and Cullen, G.A. (1978). Transmission of immunity from inactivated infectious bursal disease oil-emulsion vaccinated parent chickens to their chicks. Vet Rec 102:362-363. Yamaguchi, T., Iwata, K., Kobayashi, M., Ogawa, M., Fukushi, H., and Hirai, K. (1996). Epitope mapping of capsid proteins VP2 and VP3 of infectious bursal disease virus. Arch Virol 141:1493-507. Yao, K., and Vakharia, V.N. (1998). Generation of infectious pancreatic necrosis virus from cloned cDNA. J. Virol. 72:8913-8920. | 摘要: | 本實驗室先前研究中證實利用固定化金屬親合性管柱 (Immobilized metal ion affinity chromatography, IMAC) 可以純化未融合His-tag的雞傳染性華氏囊病病毒 (Infectious Bursal Disease Virus, IBDV),以及其結構蛋白VP2所組裝的次病毒顆粒 (Subviral Particle, SVP),且經由結構推測可能是次病毒顆粒表面的胺基酸提供與鎳離子吸附的親和力。此外先前的研究亦指出IBDV VP2胺基酸位置206到350之間包含病毒的中和性抗原決定區,因此任一胺基酸變動都可能導致病毒的抗原變異,並有其他相關研究指出胺基酸253, 279, 284可調控病毒的致病力及進入細胞的機轉。 本實驗首先利用昆蟲細胞表現系統生產點突變VP2-441-H249.253A、 VP2-441-H253A及VP2-441-H249A 蛋白做為研究材料,經由蔗糖超高速離心純化後,藉由穿透式電子顯微鏡觀察次病毒顆粒。並以不同酸鹼值 (power of hydrogen, pH) 的緩衝溶液和不同濃度咪唑 (Imidazole) 進行沖提並藉由分子量篩選的高效能液相層析系統 (High Performance Liquid Chromatography, HPLC) 分析,經由上述實驗證實SVP表面的His253是和Ni-NTA吸附主要的胺基酸。之後進行等溫平衡吸附實驗得到每毫升Ni-NTA可以吸附的蛋白分子莫耳數 (Q),可得到VP2-441與Ni-NTA吸附達飽和之值 (Q) 為7.9 x 10-10 moles/ml Ni-NTA;H249A和H253A之Q值分別為7.3 x 10-10 and 3.5 x 10-10 moles/ml Ni-NTA,但H249.253A因為喪失了與鎳離子的吸附能力並無飽和值,所以取各組之Q值平均可得到2.6 x 10-11 moles/ml Ni-NTA。更進一步研究 H249 和 H253 是否會影響免疫原性,經由單株抗體 MAb SVP-1 和 MAb SVP-4 辨認 wild type VP2-441 SVP 以及突變 His249 與 His253 形成之 SVP,發現突變株均比 wild type VP2-441 SVP 與 mAb1 和 mAb4 結合效率要高,且經由雞隻免疫實驗結果發現VP2-441-H253A產生中和性抗體與VP2-specific IgG 力價均較 wild type VP2-441略為上升,因此推測 His253 可能位於影響IBDV免疫原性之位置。 In previous studies, we have confirmed that both of infectious bursal disease virus (IBDV) virions and the subviral particles (SVPs) composed of IBDV VP2 protein can be purified by immobilized metal ion affinity chromatography (IMAC). This suggests some amino acid residues on the surface of IBDV virions mediate the interaction with Ni2+ metal ions. Earlier reports indicate the region from residue 206 to 350 in VP2 protein contain the major immunogenic determinants. Therefore, any mutations on this region may result in IBDV antigenic variation. Furthermore, other resides include 253, 279, and 284 may determine the viral pathogenicity or play a key role on viral entry. In this study, we focus on two histidine residues (His249 and His253) and investigate its importance on the interaction with Ni2+ ion and the effect on the immunogenicity. For these purposes, three VP2-441 variants, H249A, H253A, and H249.253A, were constructed and expressed by baculovirus expression system. The particle morphology of these variants examined by transmission electron microscopy (TEM) was similar to the authentic VP2-441 SVPs, exhibiting that the mutation from histidine to alanine doesn't affect the particle self-assembly. The binding strength of these variants with immobilized Ni2+ ion was measured by quantitating the unbound VP2 protein after a series of wash with various pH and imidazole concentrations. The results demonstrated that the His253 on the particle surface was the major amino acid contributes to the interaction with Ni2+ ion. Afterward, the adsorption of VP2-441 SVP to Ni2+-NTA was increased with the concentration of free VP2. The bound protein per volume of resin (Q) for VP2-441 SVP is 7.9 x 10-10 moles/ml Ni-NTA. The saturated Q of H249A and H253A reached to 7.3 x 10-10 and 3.5 x 10-10 moles/ml Ni-NTA, respectively. The equilibrium adsorption isoterm of H249.253A SVP to Ni-NTA had no accordance to the concentration of SVP and the average Q value was 2.6 x 10-11 moles/ml Ni-NTA, which is the lowest among the four SVPs. For investigating the effect of such mutation on its immunogenicity, the corresponding SVPs were recognized by two neutralizing monoclonal antibodies (MAb SVP-1 and MAb SVP-4) against IBDV in an ELISA test. The data have shown such mutations offer the SVP a better binding affinity to the two neutralizing monoclonal antibodies. The protections afforded by three VP2-441 SVP variants were also compared by immunizing the specific-pathogen-free chickens and following with a homologous virus challenge. The sera collected from the chickens immunized with H253A SVPs have a higher virus neutralizing (VN) titer than authentic VP2-441 SVPs did. These suggested that the His253 may locate on the center of immunogenic determinants and mutation to alanine has fine-tuned the local structure to fit the binding pocket of neutralization antibody much more tightly. |
URI: | http://hdl.handle.net/11455/36191 | 其他識別: | U0005-2508200819404500 |
Appears in Collections: | 生物科技學研究所 |
Show full item record
TAIR Related Article
Google ScholarTM
Check
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.